matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraUnterräume eines Vektorraums
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Unterräume eines Vektorraums
Unterräume eines Vektorraums < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterräume eines Vektorraums: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:25 Fr 10.11.2006
Autor: noname86

Aufgabe
Es seien U1,U2 [mm] \subset [/mm] V lineare Unterräume eines R-Vektorraums V. Zeige:
a) U1  [mm] \cup [/mm] U2 ist ein linerarer Unterraum [mm] \gdw [/mm] U1 [mm] \subset [/mm] U2 oder u2 [mm] \subset [/mm] u1
b) Die folgenden beiden Aussagen sind äquivalent:
b) Für jedes x [mm] \varepsilon [/mm] V gibt es eindeutig bestimmte Vektoren u1 [mm] \varepsilon [/mm] U1 und u2 [mm] \varepsilon [/mm] U2 mit x = u1+u2

zu a)
Ich hab den Äquivalenzpfeil aufgeilt und erst die Rückrichtung gezeigt, in dem ich einfach die 3 Eigenschaften für je zwei Vektoren aus U1 behauptet habe und dann den einen Vektor ersetze durch einen Vektor aus U2. (da U2 Teilmenge von U1). Nullvektor ist auch gegeben (da U2 selbstständig ein Unterraum ist) - Reicht das so?

In die andere Richtung wird es schwieriger. Habe ein Beispiel gefunden, wo U1 nicht Teil von U2 ist und die Addition keinen Teil des Unterraums ergibt.

[mm] \pmat{ 1 & 0 \\ 0 & 1} [/mm] + pmat{ 0 & 1 [mm] \\ [/mm] 1 & 0 }
und da dies nicht Element aus U1, U2 ist, wäre die Behauptung falsch. Aber damit ist nicht gezeigt dass daraus folgt, dass für einen linearen Unterraum gelten MUSS; dass des eine Teilmenge vom anderen ist.

Wie könnte man beweisen,dass der Durchschnitt von U1 und U2 ein linearerer Unterraum ist?


zu b)
die Aussage verstehe ich 100%ig und zwar da die Schnittmenge 0 ist, ist jedes x eindeutig bestimmt. Die Sache mit der Addition ergibt sich auch, doch wie beweist man diese Aussage?



ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Unterräume eines Vektorraums: Antwort
Status: (Antwort) fertig Status 
Datum: 00:37 Sa 11.11.2006
Autor: zahlenspieler

Hallo noname86,
das Symbol für die Durchschnittsbildung ist [mm] $\cap$, [/mm] in der Aufgabenstellung ist aber die *Vereinigung* [mm] ($\cup$) [/mm] gemeint :-).
Die 2. Aussage von Teil b) ist hier leider nicht angekommen:-(; dürfte wohl etwa so aussehen: [mm] $V=U_1+U_2$ [/mm] und [mm] $U_1 \cap U_2={0}$. [/mm]
Zur Rückrichtung:
Voraussetzung: [mm] $U_1 \cap U_2 [/mm] ={0}$.
Gegeben ein Vektor $v [mm] \in [/mm] V$, und es gibt [mm] $u_1,v_1 \in U_1$ $u_2,v_2 \in U_2$ [/mm] mit [mm] $u_1+u_2=v=v_1+v_2$. [/mm] Stell diese Gleichung mal so um, daß auf beiden Seiten jeweils die Summe zweier Vektoren aus dem selben Unterraum steht :-).
Mfg
zahlenspieler

Bezug
        
Bezug
Unterräume eines Vektorraums: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Mo 13.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]