matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraUnterräume des K-Vektorraums
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Unterräume des K-Vektorraums
Unterräume des K-Vektorraums < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterräume des K-Vektorraums: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:19 Fr 13.01.2006
Autor: tom.bg

Aufgabe
Es seien U; U' Unterräume des K-Vektorraums V . Man beweise eine der folgenden Aussagen:
      (U + U')=U ist isomorph zu U'/(U [mm] \cap [/mm] U').
      Falls U' [mm] \subset [/mm] U, dann ist (V/U')/(U/U') isomorph zu V/U.

Einfach nur...HILFE!!

        
Bezug
Unterräume des K-Vektorraums: Antwort
Status: (Antwort) fertig Status 
Datum: 06:28 Fr 13.01.2006
Autor: mathiash

Hallo und guten Morgen,

die erste Aussage scheint mir zweifelhaft - um nicht zu sagen: falsch, denn U' ist dann
ja Unterraum von U, und der Quotient sollte somit  der Nullraum sein.

Zur zweiten Aussage:

Du kannst einfach einen Isomorphismus angeben:

Bezeichnen wir die Aequivalenzklassen von [mm] V\slash [/mm] U mit [mm] [v]_U, [/mm] die von

[mm] V\slash [/mm] U' mit [mm] [v]_{U'} [/mm] und dann die von [mm] (V\slash U')\slash (U\slash [/mm] U')
mit  [mm] [\: [v]_{U'}\: ]_{U\slash U'} [/mm]

Nimm dann die Abbildung

[mm] (V\slash U')\slash (U\slash [/mm] U') [mm] \rightarrow V\slash [/mm] U

[mm] [\: [v]_{U'}\: ]_{U\slash U'} \mapsto [v]_U [/mm]

Du musst nun Wohldefiniertheit zeigen:
dass naemlich, wenn Du zwei Klassen [mm] [v]_{U'}, [u]_{U'} [/mm] von [mm] V\slash [/mm] U' hast, die
aequivalent bzg. [mm] U\slash [/mm] U' sind, dass dann für alle Paare von Elementen dieser
beiden Klassen v',u' auch  [mm] [v']_U=[u']_U [/mm] gilt.

Aequivalenz heisst aber doch per def. , dass [mm] [v]_{U'}-[u]_{U'} [/mm] in [mm] U\slash [/mm] U ist, und
diese Differenz ist definiert als

     [mm] [v-u]_{U'} [/mm]

Zu zeigen ist also, dass aus [mm] [v-u]_{U'} \in U\slash [/mm] U'  ,  [mm] v-v'\in [/mm] U' und [mm] u-u'\in [/mm] U'

auch    [mm] v'-u'\in [/mm] U' folgt.

[mm] [v-u]_{U'}\in U\slash [/mm] U' heisst, dass es [mm] z\in [/mm] U gibt mit [mm] v-u-z\in [/mm] U'. Da U' Unterraum von U ist, muss sogar bereits [mm] v-u\in [/mm] U' sein.

Dann ist

  v'-u'= (v'-v)  + (v-u)  +(u-u')  als Summe von Vektoren in U; auch in U'.

Hat man nun die Wohldef., so muss man die Bijektivitaet zeigen, aber es gibt ja die Umkehrabbildung (s.o.). Vertraeglichkeit mit den rechenoperationen geht
dann analog.

Eine allgemeine Bemerkung:
Hatte ich es bereits irgendwo im Forum erwaehnt, dass dieser Isomorphiesatz
nur ein Spezialfall eines Isomorphiesatzes fuer allgemeine algebraische Strukturen
ist, der zB aehnlich fuer Gruppen mit Normalteilern, Ringen mit Idealen etc. gilt ?

Schaut mal in die Universelle Algebra......

Gruss,

Mathias



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]