matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenUnterräume - Vektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Unterräume - Vektoren
Unterräume - Vektoren < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterräume - Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:18 So 20.12.2009
Autor: loot_00

Aufgabe
a) Es seien V und W Vektorräume über K und T: V [mm] \to [/mm] W eine lineare Abbildung. Weiter seien
        
     [mm] Kern(T)=\{ v \in V | Tv = 0 \} [/mm]  und  [mm] Bild(T)=\{w \in W | \exists v \in V: Tv = w\} [/mm]

Zeigen sie, dass Kern(T) ein Unterraum von V und Bild(T) ein Unterraum von W ist.

b) Es seien V,W,Z Vektorräume und T: V [mm] \to [/mm] W und Q: W [mm] \to [/mm] Z Isomorphismen. Zeigen Sie, dass Q [mm] \circ [/mm] T: V [mm] \to [/mm] Z mit (Q [mm] \circ [/mm] T)(v)=Q(Tv) ebenfalls ein Isomorphismus ist.

Ich tue mich bei solchen Aufgaben immer schwer. Vielleicht kann einer helfen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

LG

        
Bezug
Unterräume - Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 03:36 So 20.12.2009
Autor: Fulla

Hallo loot_00,

> a) Es seien V und W Vektorräume über K und T: V [mm]\to[/mm] W
> eine lineare Abbildung. Weiter seien
>          
> [mm]Kern(T)=\{ v \in V | Tv = 0 \}[/mm]  und  [mm]Bild(T)=\{w \in W | \exists v \in V: Tv = w\}[/mm]
>  
> Zeigen sie, dass Kern(T) ein Unterraum von V und Bild(T)
> ein Unterraum von W ist.

Was musst du denn hier genau zeigen? Welche Bedingungen müssen gelten, damit [mm] $\operatorname{ker}(T)$ [/mm] und [mm] $\operatorname{im}(T)$ [/mm] Untervektorräume von W sind?
Z.B. muss gelten [mm] $0\in\operatorname{ker}(T)$. [/mm] Offensichtlich ist für $v=0$ auch [mm] $Tv=T\cdot 0=0\in\operatorname{ker}(T)$ [/mm] (denn [mm] $0\in [/mm] V$, da V ein Vektorraum ist). Für die anderen Bedingungen wähle dir Elemente aus dem Kern und zeige die geforderten Eigenschaften.
  

> b) Es seien V,W,Z Vektorräume und T: V [mm]\to[/mm] W und Q: W [mm]\to[/mm]
> Z Isomorphismen. Zeigen Sie, dass Q [mm]\circ[/mm] T: V [mm]\to[/mm] Z mit (Q
> [mm]\circ[/mm] T)(v)=Q(Tv) ebenfalls ein Isomorphismus ist.

Hier dasselbe: Was genau musst du zeigen? Welche Eigenschaften müssen muss [mm] $Q\circ [/mm] T$ haben, damit es ein Isomorphismus ist? Wähle dir wieder Elemente aus V bzw. W und zeige das Geforderte.

> Ich tue mich bei solchen Aufgaben immer schwer. Vielleicht
> kann einer helfen?

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> LG


Lieben Gruß,
Fulla

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]