matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesUnterräume
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra Sonstiges" - Unterräume
Unterräume < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 So 06.06.2010
Autor: Achilles2084

Aufgabe
Es sei [mm] U:=\{(x_{1},x_{2},.....,x_{n}\} \in \IR^{n} [/mm] : [mm] \summe_{i=1}^{n} x_{i}=0 \subseteq \IR^{n} [/mm]

a) Zeigen Sie, dass U ein linearer Unterraum des  [mm] \IR^{n} [/mm] ist.
b) Bestimmen Sie eine Basis für U. Welche Dimension hat damit U?

Hallo,

stecke an dieser Aufgabe fest und zwar ist mir nicht klar wie ich zeigen soll, dass U ein Unterraum ist. Ich muss ja nachweisen, dass der Nullvektor in da drinnen ist und, dass Addition darin vorkommt.

Lese ich das übrigens richtig, dass wenn ich die Vektoren aufsummiere immer 0 raus kommt?

Danke für die Hilfe

        
Bezug
Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 17:01 So 06.06.2010
Autor: max3000

Ein Unterraum zeichnet sich aus durch

a) Homogenität, d.h. für [mm] $u\in [/mm] U$ muss für beliebiges [mm] \lambda\in\IR [/mm] auch [mm] $\lambda*u\in [/mm] U$ sein. Also das ganze mal in die Definition eingesetzt, da steht dann

[mm] \summe_{i=0}^{n}\lambda*x_i=\lambda*\summe_{i=0}^{n}x_i=\lambda*0=0 [/mm]

b) Linearität, d.h. für [mm] $u,v\in [/mm] U$ muss auch [mm] $u+v\in [/mm] U$ sein. Wieder Definition hernehmen:

[mm] \summe_{i=0}^{n}(u_i+v_i)=\summe_{i=0}^{n}u_i+\summe_{i=0}^{n}v_i=0+0 [/mm]

Dass dann [mm] $0\in [/mm] U$ gilt folgt damit auch automatisch.

Und ja, U beinhaltet alle Vektoren, die als Summe der Komponenten 0 ergeben.



Bezug
                
Bezug
Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:09 So 06.06.2010
Autor: Achilles2084

Bedeutet das dann, dass die Basis dieses UV der Nullvektor ist? Dimension 0.

Bezug
                        
Bezug
Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 17:28 So 06.06.2010
Autor: schachuzipus

Hallo Dario,

> Bedeutet das dann, dass die Basis dieses UV der Nullvektor
> ist? Dimension 0.  

Dann wäre $U$ der Nullraum [mm] $U=\{(0,0,\ldots,0)\}$ [/mm]

Kommt also nicht hin.

Du hast als definierende Bedingung doch [mm] $\vec{x}=(x_1,x_2,\ldots,x_n)\in [/mm] U$, wenn [mm] $x_1+x_2+\ldots+x_n=0$ [/mm]

Das ist ein LGS mit einer Gleichung in $n$ Unbekannten [mm] $x_i$. [/mm]

Stelle die Gleichung nach [mm] $x_1$ [/mm] um: [mm] $x_1=-x_2-x_3-\ldots-x_n$ [/mm]

Du kannst dir also $n-1$ Variablen [mm] $x_2,x_3,\ldots,x_n$ [/mm] frei wählen.

Damit ergibt sich als Basis und folglich als Dimension von U was?

Gruß

schachuzipus

Bezug
                                
Bezug
Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 So 06.06.2010
Autor: Achilles2084

Hey Schachuzipus,

dann wäre ja der einzige feste Vektor [mm] x_{1} [/mm] und somit auch die Basis wenn ich die anderen frei wählen kann. Dimension 1.

Richtig?

Bezug
                                        
Bezug
Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 So 06.06.2010
Autor: schachuzipus

Hallo nochmal,

> Hey Schachuzipus,
>  
> dann wäre ja der einzige feste Vektor [mm]x_{1}[/mm] und somit auch
> die Basis wenn ich die anderen frei wählen kann. Dimension
> 1.
>
> Richtig?

Nein, schreib doch mal ne Basis hin!

Jeder Vektor [mm] $\vec{x}=\vektor{x_1\\x_2\\x_3\\\vdots\\x_n}\in [/mm] U$ lässt sich mit dem oben Gesagten doch schreiben als

[mm] $\vec{x}=\vektor{-x_2-x_3-\ldots-x_n\\x_2\\x_3\\\vdots\\x_n}=\vektor{-x_2\\x_2\\0\\0\\\vdots\\0}+\vektor{-x_3\\0\\x_3\\0\\\vdots\\0}+\ldots+\vektor{-x_n\\0\\0\\0\\\vdots\\x_n}$ [/mm] mit [mm] $x_2,x_3,\ldots,x_n\in\IR$ [/mm] beliebig.

Wie schaut's also mit einer Basis aus?

Und dann mit der Dimension?

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]