matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeUnterräume
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Moduln und Vektorräume" - Unterräume
Unterräume < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterräume: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:23 Mi 21.11.2007
Autor: chief005

Aufgabe
Bestimme sämtliche Untervektorräume des [mm] \IR³ [/mm] (mit Beweis, dass es tatsächlich alle möglichen Unterräume sind)

Hinweis: Sie dürfen ohne Beweis verwenden, dass [mm] dim(\IR³) [/mm] = 3 ist.

Hallo liebes Forum,

Ich komme bei dieser Aufgabe nicht weiter. Meine Überlegung war es das Untervektorräume von [mm] \IR³ [/mm] auf jeden Fall (0,0,0) also Nullvektor und (1,1,1) ist, weil sich dadurch ja jeder Vektor ausdrücken lässt. Aber wie komme ich nun auf die anderen Unterräume? Bzw gibt es noch andere?

Danke im voraus

Viele Grüße

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 09:53 Do 22.11.2007
Autor: angela.h.b.


> Bestimme sämtliche Untervektorräume des [mm]\IR³[/mm] (mit Beweis,
> dass es tatsächlich alle möglichen Unterräume sind)
>  
> Hinweis: Sie dürfen ohne Beweis verwenden, dass [mm]dim(\IR³)[/mm] =
> 3 ist.

  

> Ich komme bei dieser Aufgabe nicht weiter. Meine Überlegung
> war es das Untervektorräume von [mm]\IR³[/mm] auf jeden Fall (0,0,0)
> also Nullvektor und (1,1,1) ist, weil sich dadurch ja jeder
> Vektor ausdrücken lässt.

Hallo,

ich verstehe überhaupt nicht, ws Du damit meinst...

Ich kann doch [mm] \vektor{1 \\ 0\\0 } [/mm] nicht durch [mm] (0,0,0)^t [/mm] und [mm] (1,1,1)^t [/mm] ausdrücken. (???)
Was meinst Du damit?

Weißt Du eigentlich, was ein Unterraum ist?
Weißt Du, was Dimension bedeutet?

Hat der [mm] \IR^3 [/mm] Unterräume der Dimension 4?

Welche Dimensionen kommen prinzipiell infrage?

Wie sieht ein Unterraum der Dimension 1 aus?

> Aber wie komme ich nun auf die
> anderen Unterräume? Bzw gibt es noch andere?

Ja, es gibt welche. Um sie zu finden, mußt Du Dich unbedingt mit den Basics der Vektorräume bekannt machen!
Ohne das geht's nicht.

Vektorraum, Untervektorraum, Basis, Dimension, Erzeugendensystem, lineare Hülle (auch: Span, erzeugter Raum)  sollten zu Deiner allerelementarsten Grundausstattung gehören. Mach Dich zunächst hier unbedingt schlau, danach können wir über einen weiteren Lösungsversuch sprechen.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]