matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesUntermannigfaltigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Sonstiges" - Untermannigfaltigkeit
Untermannigfaltigkeit < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untermannigfaltigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:10 Sa 26.10.2013
Autor: Belleci

Aufgabe
(i) Skizzieren Sie die Teilmenge [mm] M=\{(x,y)\in\mathbb{R}^2: x^3=y^2\ und\ (x,y)\not=(0,0)\}\subset\mathbb{R}^2 [/mm] und beweisen Sie, dass M eine UMF ist.

(ii) Zeigen Sie, dass [mm] N=\{(x,y)\in\mathbb{R}^2: x^3=y^2\} [/mm] keine UMF des [mm] \mathbb{R}^2 [/mm] ist. (Beweisen Sie, dass es keine Parametrisierung von N in einer Umgebung des Punktes (0,0) gibt.)


Hallo,

wir haben letzte Woche mit Untermannigfaltigkeiten (UMF) angefangen, aber ich sehe da überhaupt nicht durch. Wenn ich zeigen soll, dass eine Menge eine UMF ist, gibt es da dann verschiedene Möglichkeiten? Ich habe mir mehrere Beispiele angesehen und dort wurde es immer anders gemacht?

Unsere Aufgabe macht die Verwirrung bei mir nun komplett. Die Mengen unterscheiden sich doch bloss darin, dass bei M steht, dass [mm] (x,y)\not=(0,0) [/mm] ist. Warum macht das einen Unterschied, dass M dadurch eine UMF ist und N nicht?
Wie kann ich bei meiner Aufgabe vorgehen?

Wäre nett, wenn mir da jemand helfen könnte.
Danke,
Grüße Belleci

        
Bezug
Untermannigfaltigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:50 So 27.10.2013
Autor: Belleci

Hat denn keiner eine Idee?? :(

Bezug
        
Bezug
Untermannigfaltigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:18 Mo 28.10.2013
Autor: meili

Hallo Belleci,

> (i) Skizzieren Sie die Teilmenge [mm]M=\{(x,y)\in\mathbb{R}^2: x^3=y^2\ und\ (x,y)\not=(0,0)\}\subset\mathbb{R}^2[/mm]
> und beweisen Sie, dass M eine UMF ist.
>  
> (ii) Zeigen Sie, dass [mm]N=\{(x,y)\in\mathbb{R}^2: x^3=y^2\}[/mm]
> keine UMF des [mm]\mathbb{R}^2[/mm] ist. (Beweisen Sie, dass es
> keine Parametrisierung von N in einer Umgebung des Punktes
> (0,0) gibt.)
>  
> Hallo,
>  
> wir haben letzte Woche mit Untermannigfaltigkeiten (UMF)
> angefangen, aber ich sehe da überhaupt nicht durch. Wenn
> ich zeigen soll, dass eine Menge eine UMF ist, gibt es da
> dann verschiedene Möglichkeiten? Ich habe mir mehrere
> Beispiele angesehen und dort wurde es immer anders
> gemacht?

Welche Möglichkeiten hast Du denn in den Beispielen kennengelernt?

>  
> Unsere Aufgabe macht die Verwirrung bei mir nun komplett.
> Die Mengen unterscheiden sich doch bloss darin, dass bei M
> steht, dass [mm](x,y)\not=(0,0)[/mm] ist. Warum macht das einen
> Unterschied, dass M dadurch eine UMF ist und N nicht?

(0,0) ist eben die entscheidende Stelle.

>  Wie kann ich bei meiner Aufgabe vorgehen?

Hast Du M oder N schon skizziert?
Was fällt bei (0,0) auf?
Wie ist es mit der Differenzierbarkeit von in Frage kommenden Parameterisierungen?
Gibt es eine Karte für eine Umgebung von (0,0)?

>  
> Wäre nett, wenn mir da jemand helfen könnte.
>  Danke,
>  Grüße Belleci

Gruß
meili

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]