matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieUntermannigfaltigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Topologie und Geometrie" - Untermannigfaltigkeit
Untermannigfaltigkeit < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untermannigfaltigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:49 Mi 17.11.2010
Autor: Salamence

Aufgabe
Sei [mm] f:X\to [/mm] M glatt und [mm] g:Y\to [/mm] M sei eine eingebettete Untermannigfaltigkeit.
f und g liegen schief zueinander, d. h.:
[mm] \forall p\in Bild(f)\cap [/mm] Bild(g): [mm] T_{p}(M)=span(Bild(T_{x}(f)\cup Bild(T_{y}(g))) [/mm] für alle [mm] x\in f^{-1}(p) [/mm] und [mm] y\in g^{-1}(p) [/mm]

Zeigen Sie: [mm] N:=f^{-1}(Bild(f)\cap [/mm] Bild(g)) ist eine eingebettete Untermannigfaltigkeit von X.

Hi ho!

Also ich habe Schwierigkeiten, überhaupt zu verstehen, was dieses schief zueinander nun genau meint...

Na egal...

Zu zeigen ist ja nun "nur", dass N eine eingebettete Untermannigfaltigkeit von X ist. Dafür braucht man ja erstmal ne Abbildung und da ist doch die Inklusion/Identität auf N naheliegend, da N ja schon in X liegt...

zu zeigen ist dann:
[mm] \iota:N\to [/mm] X ist glatt und injektiv
[mm] T_{x}(\iota) [/mm] ist injektiv für alle [mm] x\in [/mm] N
[mm] \iota=Id_{N} [/mm] ist ein Homöomorphismus

So jetzt sollte das doch alles klar sein oder nicht? Wo soll da was von den Voraussetzungen eingehen????

Irgendwie muss ich wohl die Aufgabe überhaupt nicht verstanden haben.

        
Bezug
Untermannigfaltigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:45 Mi 17.11.2010
Autor: meili

Hallo Salamence,

> Sei [mm]f:X\to[/mm] M glatt und [mm]g:Y\to[/mm] M sei eine eingebettete
> Untermannigfaltigkeit.
>  f und g liegen schief zueinander, d. h.:
> [mm]\forall p\in Bild(f)\cap[/mm] Bild(g):
> [mm]T_{p}(M)=span(Bild(T_{x}(f)\cup Bild(T_{y}(g)))[/mm] für alle
> [mm]x\in f^{-1}(p)[/mm] und [mm]y\in g^{-1}(p)[/mm]
>  
> Zeigen Sie: [mm]N:=f^{-1}(Bild(f)\cap[/mm] Bild(g)) ist eine
> eingebettete Untermannigfaltigkeit von X.
>  Hi ho!
>  
> Also ich habe Schwierigkeiten, überhaupt zu verstehen, was
> dieses schief zueinander nun genau meint...

Ich nehme an, dass mit [mm] $T_s(Z)$ [/mm] der Tangentialraum zu Z im Punkt s gemeint ist.
Dann ist mit f und g liegen schief zueinander ganz anschaulich gemeint, dass die Bilder von f und g in M nicht "parallel" liegen, sondern in jedem Punkt Ihres Schnittes den Tangentialraum zu M in diesem Punkt sich aus den Bildern der Tangentialräumen Ihrer Urbilder aufspannen lässt.

>  
> Na egal...
>  
> Zu zeigen ist ja nun "nur", dass N eine eingebettete
> Untermannigfaltigkeit von X ist. Dafür braucht man ja
> erstmal ne Abbildung und da ist doch die
> Inklusion/Identität auf N naheliegend, da N ja schon in X
> liegt...

Ja, $N [mm] \subseteq [/mm] X$.
Aber muss man nicht auch zeigen, dass X eine Mannigfaltigkeit ist?

>  
> zu zeigen ist dann:
>  [mm]\iota:N\to[/mm] X ist glatt und injektiv
>  [mm]T_{x}(\iota)[/mm] ist injektiv für alle [mm]x\in[/mm] N
>  [mm]\iota=Id_{N}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

ist ein Homöomorphismus
Eine Teilmenge N einer n-dimensionalen Mannigfaltigkeit X ist genau dann eine k-dimensionale eingebettete Untermannigfaltigkeit, wenn für jeden Punkt p $\in$ N eine Karte $(\varphi,U)$ von X existiert, so dass die Gleichung

   $ \varphi(N\cap U)$ = $(\IR}^k \times 0) \cap \varphi(U)$

erfüllt ist. Das Zeichen 0 $\in \IR^{n-k}$ bezeichnet hier ein (n-k)-Tupel.
(Vergleiche []eingebettete Untermannigfaltigkeit)

Ja, vielleicht kannst Du in diesem Fall  für $ [mm] \varphi$ [/mm] die  Inklusion/Identität auf N und U = N wählen.

>  
> So jetzt sollte das doch alles klar sein oder nicht? Wo
> soll da was von den Voraussetzungen eingehen????
>  
> Irgendwie muss ich wohl die Aufgabe überhaupt nicht
> verstanden haben.

Gruß
meili

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]