Untermannigfaltigkeit < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo an alle;
ich schreib demnächst Klausur und bin über das Wort Untermannigfaltigkeit gestoßen; Ich habe auch schon in Wikipedia die Definition gelesen, aber die hat mir nicht wirklich weiter geholfen;
Kann mir vielleicht hier jemand in einfachen Worten sagen, was ich mir unter Untermannigfltigkeit vorstellen soll?
schon mal Danke im Vorraus,
fg
Chrissi
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:31 Fr 25.09.2009 | Autor: | rainerS |
Hallo Chrissi!
> ich schreib demnächst Klausur und bin über das Wort
> Untermannigfaltigkeit gestoßen; Ich habe auch schon in
> Wikipedia die Definition gelesen, aber die hat mir nicht
> wirklich weiter geholfen;
> Kann mir vielleicht hier jemand in einfachen Worten sagen,
> was ich mir unter Untermannigfltigkeit vorstellen soll?
Was eine Mannigfaltigkeit ist, ist dir klar? Das ist ein topologischer Raum, der lokal isomorph ist zum [mm] $\IR^n$. [/mm] Das soll heißen, dass eine genügend kleines Stück dieser Mannigfaltigkeit isomorph (homöomorph oder diffeomorph) zu einer Teilmenge des [mm] $\IR^n$ [/mm] ist. Man könnte salopp sagen: "Lokal kann ist eine Mannigfaltigkeit immer zu einem Stück flachen Raumes deformieren."
Eine Untermannigfaltigkeit ist eine Teilmenge einer Mannigfaltigkeit, die einfach dadurch selbst zur Mannigfaltigkeit wird, dass man die Isomorphismen der (Haupt-)Mannigfaltigkeit übernimmt bzw. auf die Teilmenge einschränkt.
Ein einfaches Beispiel: die Oberfläche einer Kugel ist eine (2-dimensionale) Mannigfaltigkeit; jede echte Teilmenge der Kugeloberfläche lässt sich mit einer bijektiven differenzierbaren Abbildung auf einen Teil des [mm] $\IR^2$ [/mm] abbilden. (Jede Weltkarte ist nichts Anderes als eine solche Abbildung der Erdoberfläche.)
Ein Großkreis auf der Kugeloberfläche, also ein Kreis, dessen Mittelpunkt im Kugelmittelpunkt liegt, ist eine eindimensionale Untermannigfaltigkeit. Wenn ich die Abbildungen von der Kugeloberfläche in den [mm] $\IR^2$ [/mm] auf die Kreise einschränke, so werden die Kreise auf Kurven im [mm] $\IR^2$ [/mm] abgebildet. (Um beim Beispiel der Weltkarte zu bleiben: auf der Karte sind das unter Anderem die Meridiane.)
Viele Grüße
Rainer
|
|
|
|