Untermannigfaltigkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 00:24 So 28.06.2009 | Autor: | MaRaQ |
Aufgabe | Sei [mm]I \subset \IR[/mm] ein offenes Intervall, a = [mm](a_1 , ... , a_n) : I \to \IR^n[/mm] stetig differenzierbar und [mm]a'(t) \not= 0[/mm] für alle [mm] t \in I[/mm]. Zeigen Sie, dass es zu jedem [mm]t_0 \in I[/mm] eine offene Umgebung [mm] U = U(t_0) \subset I[/mm] und eine offene Menge [mm]B \subset \IR^n[/mm] gibt, so dass a(U) eine Untermannigfaltigkeit von B ist. |
Als Tipp habe ich weiterhin bekommen, dass ich oBdA annehmen solle, dass [mm]a_1 ' (t_0) \not= 0[/mm] ist und ich mir mit [mm]a_1 : I \to \IR[/mm] eine neue Parametrisierung von a verschaffen solle.
Nur inwiefern würde mir das weiterhelfen? Und wie stelle ich das an? Ich bin hier komplett und ansatzlos überfragt.
Aus der skriptgemäßen Definition der Untermannigfaltigkeit folgere ich, dass ich zweierlei zeigen muss:
1.) [mm]U \cap B = \{ x \in U : a_1(x) = ... = a_d (x) = 0\}[/mm]
2.) [mm] grad a_1(x) , ... , grad a_d(x)[/mm] sind linear unabhängig [mm]\forall x \in U[/mm]
wobei d die Codimension von B in [mm]x_0[/mm] (bel. Punkt in B) sein soll.
Ich hoffe, da ist jetzt nicht zu viel Unsinn dabei, in meinem Eröffnungsbeitrag. Es tut mir leid, dass ich da momentan noch nicht mehr Eigenleistung investieren kann.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 01:20 Do 02.07.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|