matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesUntermannigfaltigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Untermannigfaltigkeit
Untermannigfaltigkeit < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untermannigfaltigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:51 Mi 25.05.2016
Autor: Skyrula

Aufgabe
Zeigen Sie, dass [mm] M:=\{(x,y,z)\in\IR^3|z^2-xy=1\} [/mm] eine nichtkompakte zweidimensionale Untermannigfaltigkeit des [mm] \IR^3 [/mm] ist.

Hallo, ich komme hier absolut nicht weiter, aber ich weiß nicht nichts. Es wäre sehr hilfreich, falls jemand einen kleinen Denkanstoß in die Richtige Richtung geben könnte.

Danke euch

        
Bezug
Untermannigfaltigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:03 Mi 25.05.2016
Autor: fred97


> Zeigen Sie, dass [mm]M:=\{(x,y,z)\in\IR^3|z^2-xy=1\}[/mm] eine
> nichtkompakte zweidimensionale Untermannigfaltigkeit des
> [mm]\IR^3[/mm] ist.
>  Hallo, ich komme hier absolut nicht weiter, aber ich weiß
> nicht nichts. Es wäre sehr hilfreich, falls jemand einen
> kleinen Denkanstoß in die Richtige Richtung geben
> könnte.

Dass M nicht kompakt ist sieht man leicht: M ist nicht beaschränkt. Begründe dies !

Was sind die definierenden Eigenschaften von "zweidimensionale Untermannigfaltigkeit des [mm]\IR^3[/mm] " ?

FRED

>  
> Danke euch


Bezug
                
Bezug
Untermannigfaltigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:35 Mi 25.05.2016
Autor: Skyrula

Zur Kompaktheit von M lässt sich sagen, dass M durch den Term [mm] z^2 [/mm] nach unten beschränkt ist, da [mm] z^2 [/mm] eine Parabelförmige nach oben geöffnete Funktion ist. Der Term -xy verschiebt die Schranke zwar, verändert aber nichts and der Existenz der Schranke.

Richtig?

Bezug
                        
Bezug
Untermannigfaltigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 10:01 Mi 25.05.2016
Autor: fred97


> Zur Kompaktheit von M lässt sich sagen, dass M durch den
> Term [mm]z^2[/mm] nach unten beschränkt ist, da [mm]z^2[/mm] eine
> Parabelförmige nach oben geöffnete Funktion ist. Der Term
> -xy verschiebt die Schranke zwar, verändert aber nichts
> and der Existenz der Schranke.

Mit Verlaub, aber das ist großer Unsinn !

M ist nicht beschränkt, denn für jedes n [mm] \in \IN [/mm] ist

   $(n, [mm] -\bruch{1}{n},0) \in [/mm] M$

FRED

>  
> Richtig?


Bezug
                                
Bezug
Untermannigfaltigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:00 Mi 25.05.2016
Autor: Skyrula

Ich verstehe das leider nicht so ganz. Kann ich den Gradienten von f [mm] (x,y,z)=z^2-xy-1 [/mm] bilden, diesen gleich null setzen und damit zeigen das f nur in einer Seite beschränkt und damit nicht kompakt ist?

Komme da für das extremum auf (0,0,0)


Bezug
                                        
Bezug
Untermannigfaltigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:18 Mi 25.05.2016
Autor: fred97


> Ich verstehe das leider nicht so ganz. Kann ich den
> Gradienten von f [mm](x,y,z)=z^2-xy-1[/mm] bilden, diesen gleich
> null setzen und damit zeigen das f nur in einer Seite
> beschränkt und damit nicht kompakt ist?

Das ist doch alles Unsinn !

Dir scheint der Beschränktheitsbegriff nicht klar zu sein. Wie willst Du dann mit Mannigfaltigkeiten klarkommen ?

Annahme: M ist beschränkt. Dann gibt es ein c>0 mit

  $ ||(x,y,z)|| [mm] \le [/mm] c $ für alle (x,y,z) [mm] \in [/mm] M,

$||*||$ ist die euklidische Norm auf [mm] \IR^3. [/mm]

Für n [mm] \in \IN [/mm] ist, das hab ich Dir schon gesagt, [mm] a_n:=(n,- \bruch{1}{n},0) \in [/mm] M, somit haben wir

  [mm] ||a_n||= \wurzel{n^2+\bruch{1}{n^2}} \le [/mm] c für jedes n [mm] \in \IN. [/mm]

Quadriert man und mult. man mit [mm] n^2 [/mm] durch, so kommt

   [mm] n^4+1 \le c*n^2 [/mm]  für alle n [mm] \in \IN. [/mm]

Das letzte ist aber ganz sicher blanker Unsinn.

Fazit: M ist nicht beschränkt, und damit auch nicht kompakt.

FRED

>  
> Komme da für das extremum auf (0,0,0)
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]