matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperUntergruppe, Abgeschlossenheit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Untergruppe, Abgeschlossenheit
Untergruppe, Abgeschlossenheit < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untergruppe, Abgeschlossenheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:59 Di 25.11.2014
Autor: sissile

Aufgabe
Beweisen Sie, dass [mm] G=\{\epsilon, (12)(34),(13)(24),(14)(23)\}eine [/mm] Untergruppe von [mm] S_4 [/mm] ist.

Hallo zusammen,

Ansich ein ganz easy Beispiel. Aber ich hab eine Frage dazu.
Beim Bsp. als wir zeigen mussten dass G sogar ein Normalteiler ist(ist ja Standartbsp dafür, dass die [mm] A_4 [/mm] nicht einfach ist) habe ich händisch nachgerechnet dass für [mm] G=\{\epsilon, a,b,c\} [/mm] gilt [mm] a\circ [/mm] b=c.
Nun meinte der Professor anstelle, dass händisch zu zeigen - was ja auch keine Arbeit ist - könnte man das auch abstrakt zeigen, was ja oft eleganter ist. Habt ihr einen Tipp, wie das der Professor genau meinte?

LG,
sissi

        
Bezug
Untergruppe, Abgeschlossenheit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:44 Di 25.11.2014
Autor: UniversellesObjekt

Hallo Sissi,

es würde reichen, zu zeigen, dass $G$ der von $(12)(34)$ []erzeugte Normalteiler ist. Da konjugierte Permutationen denselben []Zykeltyp haben, ist [mm] $(12)(34)^{S_4}\subseteq [/mm] G$ bereits klar. Umgekehrt benötigst du für [mm] $G\subseteq(12)(34)^{S_4}$ [/mm] nur noch zwei Rechnungen.

Dann hast du sowohl Untergruppen- als auch Normalteilereigenschaft.

Ansonsten könntest du auch einen surjektiven Homomorphismus [mm] $S_4\longrightarrow S_3$ [/mm] suchen und [mm] $V_4$ [/mm] als dessen Kern bestimmen. Wenn du Coxeter-Präsentationen von [mm] $S_4$ [/mm] und [mm] $S_3$ [/mm] kennst, wäre dieses Vorgehen besonders einfach, aber auch sonst sicherlich möglich.

Liebe Grüße,
UniversellesObjekt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]