Unterbst. nichtln. Gl.Systeme < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Umfrage) Beendete Umfrage | Datum: | 15:40 Mo 13.05.2013 | Autor: | DyingSoul |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hi,
ich bin auf der Suche nach numerischen Verfahren zur Bestimmung der Lösung von unterbestimmten nichtlinearen Gleichungssystemen.
Ich hab bis jetzt nur Verfahren gefunden die mir genau eine Lösung liefern. Ich benötige allerdings nicht eine Lösung, sondern eine systematische Beschreibung des Lösungsraumes, d.h. alle Lösungen des Systems. Es ist völlig in Ordnung (und wahrscheinlich auch gar nicht anders möglich) dass dieser Lösungsraum numerisch zurückgegeben wird (z.b. als Menge von Lösungspunkten).
Um mal etwas konkreter zu werden: Ich habe z.b. eine nichtlinearen Zusammehang F(x,y,z). In Abhängigkeite von F ergibt sich ein ein- oder zwei-dimensionaler Lösungsraum und ich brauche eine allgemeine numerische Representation diesen Raumes. Das sollte für allgemeines F funktionieren.
Gibt es solche numerischen Verfahren?
Vielen Dank :)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:32 Mi 22.05.2013 | Autor: | M.Rex |
Hallo
>
> Um mal etwas konkreter zu werden: Ich habe z.b. eine
> nichtlinearen Zusammehang F(x,y,z). In Abhängigkeite von F
> ergibt sich ein ein- oder zwei-dimensionaler Lösungsraum
> und ich brauche eine allgemeine numerische Representation
> diesen Raumes. Das sollte für allgemeines F
> funktionieren.
Das einzige Verfahren, das sich dazu meiner Meinung nach eignet, ist das Einsetzungsverfahren, dieses musst du unter Umständen mehrfach anwenden. Aber auch das geht nur, wenn man die beteiligten Gleichungen komplett analytisch nach einer Variable umstellen kann.
Eventuell könnte es sogar reichen, wenn die letzte Gleichung per Näherungsverfahren zu lösen ist, dabei bin ich mir aber gerade nicht sicher.
Schön wäre es natürlich, wenn irgendwo im Gleichungssystem Umkehrfunktionen aufeinandertreffen, das erleichtert das Einsetzen meist ungemein.
>
> Gibt es solche numerischen Verfahren?
Vielleicht hat ja noch jemand anderes eine Idee, daher habe ich die Anfrage mal als Umfrage deklariert.
>
> Vielen Dank :)
Marius
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:49 Mi 22.05.2013 | Autor: | fred97 |
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Hi,
>
> ich bin auf der Suche nach numerischen Verfahren zur
> Bestimmung der Lösung von unterbestimmten nichtlinearen
> Gleichungssystemen.
>
> Ich hab bis jetzt nur Verfahren gefunden die mir genau eine
> Lösung liefern. Ich benötige allerdings nicht eine
> Lösung, sondern eine systematische Beschreibung des
> Lösungsraumes, d.h. alle Lösungen des Systems. Es ist
> völlig in Ordnung (und wahrscheinlich auch gar nicht
> anders möglich) dass dieser Lösungsraum numerisch
> zurückgegeben wird (z.b. als Menge von Lösungspunkten).
>
> Um mal etwas konkreter zu werden: Ich habe z.b. eine
> nichtlinearen Zusammehang F(x,y,z). In Abhängigkeite von F
> ergibt sich ein ein- oder zwei-dimensionaler Lösungsraum
> und ich brauche eine allgemeine numerische Representation
> diesen Raumes. Das sollte für allgemeines F
> funktionieren.
>
> Gibt es solche numerischen Verfahren?
Schau mal hier
http://de.wikipedia.org/wiki/Liste_numerischer_Verfahren
unter "Nichtlineare Gleichungssysteme ".
Vielleicht ist was für Dich dabei.
FRED
>
> Vielen Dank :)
|
|
|
|