matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraUntegruppe aller Drehungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Untegruppe aller Drehungen
Untegruppe aller Drehungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untegruppe aller Drehungen: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 01:40 So 09.04.2006
Autor: loni

Aufgabe
Sei G die Menge der Permutationen: [mm] \{(1), (13), (24), (12)(34), (13)(24), (14)(23), (1234), (1432) \} [/mm]
Diese Permutationen können als Drehungen interpretiert werden, indem man sie auf die vier Eckpunkte eines Quadrates wirken lässt.

Die Permutationen von G bilden eine Untergruppe der symmetrischen Gruppe [mm] S_{4}, [/mm] die Symmetriegruppe des Quadrats. Wie lautet die Untegruppe aller Drehungen?

Also ich kann die Drehunge finden, aber ich verstehe nicht, wie findet man die Untegruppe aller Drehungen?

lg, loni

        
Bezug
Untegruppe aller Drehungen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:57 So 09.04.2006
Autor: reneP

Hallo Loni,

also das ist gar nicht so schwer. Du machst erst einmal das, was du wahrscheinlich eh schon längst getan hast. Du malst dir ein Quadrat hin und nennst die Ecken 1, 2, 3, 4 Dann guckst du welche Elemente deiner Gruppe einer drehung entsprechen das Element $(1 3)$ entspricht zum Beispiel keiner Drehung Da ja nur 2 Ecken miteinander vertauscht werden  somit ist das eher eine Spieglung längs der Spiegelachse die durch die Ecken 2 und 4 läuft.
wenn du dir alle Elemente deiner Gruppe graphisch visualisiert hast weißt du schnell welches die Drehungen sind. Für diese Menge musst du dann aber noch nachrechnen dass es eine untergruppe ist. Also abgeschlossenheit der verknüpfung und inverses Element. Ist aber klar, wenn du dir das graphisch anschaust.
Du hast noch eine andere Möglichkeit vorzugehen.
Die Gruppe die du angegeben hast hat 8 Elemente. Nach dem Hauptsatz von Lagrange weißt du dass es nur Untergruppen mit 1, 2,4, oder 8 Elementen geben kann.
Die Drehungen können keine 8 Elemente haben weil $(1 3)$ z.b. keine Drehung ist. dann weißt du dass $(1)$ in deiner Untergruppe sein muss. Wie gehts nun weiter? Nun du weißt zum Beispiel, dass $(1 2 3 4)$ eine Drehung ist. Wenn $(1 2 3 [mm] 4)\circ [/mm] (1 2 3 4) = (1)$ ist hättest du die Untergruppe aller Drehungen. Das ist es aber nicht somit weißt du dass die Drehungen 4 Elemente haben ( ist anschaulich auch klar warum. Drehung um 90 180 270 und 360=0 Grad)
somit weißt du schon dass das element $(1 2 3 4)$ deine gruppe erzeugt also berechnest du $(1 2 3 [mm] 4)^i$ [/mm] für $i=1,2,3,4=0$
Diese Menge sollte dir eine Gruppe bilden.
So es ist früh am Sonntag morgen ich hoffe, das war alles halbwegsverständlich, was ich geschrieben habe, wenn nicht kannst du ja einfach noch mal nachfragen!

lg René

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]