matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitUnstetigkeit zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stetigkeit" - Unstetigkeit zeigen
Unstetigkeit zeigen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unstetigkeit zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:39 So 08.03.2009
Autor: Hanz

Guten Morgen!

Ich sitze im Moment an folgender Aufgabe:

Sei [mm] f:\IR \to \IR [/mm] definiert durch [mm] f(x)=\begin{cases} e^x, & \mbox{falls} x \in \IQ \mbox{ } \\ 1+x, & \mbox{falls } x \notin \IQ \mbox{ } \end{cases}. [/mm]
Zeige, dass f in [mm] x_0 [/mm] stetig ist und sonst unstetig ist.

Dann zeige ich erstmal die Stetigkeit:
Mit [mm] x_0 [/mm] wird wohl [mm] x_0=0 [/mm] gemeint sein.
Ich definiere [mm] g(x)=e^x [/mm] und h(x)=1+x

Wenn [mm] g(x_0)=h(x_0) [/mm] dann gilt: [mm] g(x_0)=\limes_{x\rightarrow x_0}h(x) [/mm]
Also: [mm] g(0)=e^0 [/mm] = 1  und h(0)=1+0=1
[mm] \Rightarrow e^0 \overbrace{=}^{!} \limes_{x\rightarrow 0}1+x [/mm]
[mm] \gdw [/mm] 1 = 1
[mm] \Rightarrow [/mm] f(x) ist in [mm] x_0=0 [/mm] stetig!



Nun kommt der unangenehme Teil: Unstetigkeit zeigen :-s

Ich meine mich eriennern zu können, dass man hier irgendwie Folgen finden musste die nicht gegen 1 konvergieren...?
Aber ich weiss gar nicht genau wie ich hier ansetzen muss.

Danke schonmal,
Hanz

        
Bezug
Unstetigkeit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:55 So 08.03.2009
Autor: leduart

Hallo
in a) hast du die Def.gebiete von x fuer dein h und g nicht benutzt.
in b) musst du benutzen, dass es in jeder umgebung eines rat. Punktes nicht rationale gibt, und dass man jede nicht rationale zahl als GW einer rationalen Folge bekommt.
Dann nimm einmal ein ratinales [mm] x_0 [/mm] und zeig, dass die fkt da unstetig ist, dann ein nicht rationales.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]