matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisUnstetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Unstetigkeit
Unstetigkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unstetigkeit: unstetig bei x=2
Status: (Frage) beantwortet Status 
Datum: 15:48 Mo 13.03.2006
Autor: nieselfriem

Aufgabe
Die Funktion [mm] y=f(x)=\bruch{x^2-1}{x-1} [/mm] ist an der Stelle unstetig. Zwar ist
[mm] \limes_{n\rightarrow\ 1} \bruch{x^2-1}{x-1}=2 [/mm] vorhanden, aber f(1) existiert nicht.
Die Funktion ist an der Stelle x=2 defeniert:f(2)=2
Es gilt aber:
[mm] \limes_{n\rightarrow\2+0}= \limes_{n\rightarrow\+0}[2+h]=2, [/mm]
[mm] \limes_{n\rightarrow\2-0}= \limes_{n\rightarrow\+0}[2-h]=1 [/mm]
Daraus folgt wohl
[mm] \limes_{n\rightarrow\2}[x] [/mm] ist nicht vorhanden. Daraus soll folgen die Funktion ist bei x02 unstetig.

Wieso soll f(2)=2 sein?
Und wieso die Funktion dort unstetig. Die unprofessionelle Aussage ist doch dass die Funktion an der Stelle nicht gezeichnet werden kann -->unstetig. Bei f(2) kommt bei mir aber 3 heraus und kann somit gezeichnet werden. Es steht jedoch als Beispiel in einem Buch

Gruß niesel

        
Bezug
Unstetigkeit: x=1
Status: (Antwort) fertig Status 
Datum: 16:05 Mo 13.03.2006
Autor: mathmetzsch

Hallo,

wieso sprichst du andauernd von der Stelle x=2. Die interessante Stelle ist x=1, denn für x=1 wird der Nenner null. Mann kann aber die binomische Formel anwenden und dann folgt:

[mm] f(x)=\bruch{x^{2}-1}{x-1}=\bruch{(x-1)(x+1)}{x-1}=x+1. [/mm]

Das ist eine lineare Funktion und die ist überall stetig.

Viele Grüße
Daniel

Bezug
        
Bezug
Unstetigkeit: Das ist anders gemeint!
Status: (Antwort) fertig Status 
Datum: 17:02 Mo 13.03.2006
Autor: Yuma

Hallo Niesel,

ich glaube eher, du sprichst von zwei verschiedenen Funktionen $f$:

Die Funktion [mm] $f(x)=\bruch{x^2-1}{x-1}$ [/mm] ist an der Stelle $x=1$ unstetig.
Zwar ist [mm] $\limes_{x\rightarrow 1} \bruch{x^2-1}{x-1}=\limes_{x\rightarrow 1} [/mm] x+1=2$ vorhanden, aber $f(1)$ existiert nicht.
(Ich habe hier mal ein wenig editiert, weil bei dir unter dem Limes immer $n$ stand...)

Das ist also ein Beispiel für eine Funktion, deren Grenzwert an der Stelle $x=1$ zwar existiert, die aber dort keinen Funktionswert hat.

Jetzt betrachten wir eine andere Funktion, nämlich die Gauss-Klammer $f(x)=[x]$. Diese Funktion schneidet jeweils die Nachkommastellen einer Zahl ab, rundet also ab. Der Graph ist eine sogenannte Treppenfunktion.
Diese Funktion ist an der Stelle $x=2$ definiert: $f(2)=2$ (hier gibt's ja nichts abzurunden!). Es gilt aber: [mm] $\limes_{x\rightarrow 2+0}[x]=\limes_{h\rightarrow +0}[2+h]=2$, [/mm] denn wir nähern uns der $2$ ja von rechts. Kommen wir jedoch von links, so [mm] gilt$\limes_{x\rightarrow 2-0}[x]= \limes_{h\rightarrow +0}[2-h]=1$, [/mm] weil ja jetzt auf $1$ abgerundet wird.
Daraus folgt: [mm] $\limes_{x\rightarrow 2}[x]$ [/mm] existiert nicht.

Das ist also ein Beispiel für eine Funktion, deren Grenzwert an der Stelle $x=2$ nicht existiert, die aber trotzdem dort einen Funktionswert hat.

Ich hoffe, ich habe das richtig interpretiert. Frag' bitte nochmal nach, falls dir etwas unklar geblieben ist, ok?

MFG,
Yuma

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]