matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraUniverselle Eigenschaften
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - Universelle Eigenschaften
Universelle Eigenschaften < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Universelle Eigenschaften: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 Di 29.06.2010
Autor: physicus

Hallo Zusammen!

Es gibt ja zu mehreren Konzepten in der Algebra universelle Eigenschaften.(Direktes externes Produkt, Freie Gruppe etc.)
Bei vielen habe ich Schwierigkeiten die Eindeutigkeit zu zeigen:
Mein grösstes Problem liegt beim externen direkten Produkt von Gruppen:

Wenn ich eine Gruppe [mm] H [/mm] habe und [mm] \{\phi_k\}_{k=1...n} [/mm] Homomorphismen mit [mm] \phi_k : H \to G_k [/mm] wobei [mm] G_k [/mm] eine Gruppe aus dem externen direkten Produkt ist, dann gibt es genau einen Homomorphismums [mm] \tau : H \to D [/mm] wobei D das externe direkte Produkt der [mm] G_k [/mm]'s ist, so dass [mm] \pi_k\circ \tau = \phi_k [/mm] ist. Der Beweis der Eindeutigkeit von [mm] \tau [/mm] ist mir klar.
Meine Frage bezieht sich darauf: Wieso ist das direkte Produkt durch diese universelle Eigenschaft eindeutig bestimmt? Danke für eure Hilfe!

([mm] \pi_k [/mm] ist die Projektion auf die entsprechende Gruppe)

        
Bezug
Universelle Eigenschaften: Antwort
Status: (Antwort) fertig Status 
Datum: 21:36 Di 29.06.2010
Autor: andreas

hi

> Wenn ich eine Gruppe [mm]H[/mm] habe und [mm]\{\phi_k\}_{k=1...n}[/mm]
> Homomorphismen mit [mm]\phi_k : H \to G_k[/mm] wobei [mm]G_k[/mm] eine Gruppe
> aus dem externen direkten Produkt ist, dann gibt es genau
> einen Homomorphismums [mm]\tau : H \to D[/mm] wobei D das externe
> direkte Produkt der [mm]G_k [/mm]'s ist, so dass [mm]\pi_k\circ \tau = \phi_k[/mm]
> ist. Der Beweis der Eindeutigkeit von [mm]\tau[/mm] ist mir klar.
>  Meine Frage bezieht sich darauf: Wieso ist das direkte
> Produkt durch diese universelle Eigenschaft eindeutig
> bestimmt? Danke für eure Hilfe!
>  
> ([mm] \pi_k[/mm] ist die Projektion auf die entsprechende Gruppe)

das direkte produkt ist nur bis auf einen (eindeutigen) isomorphismus eindeutig, das folgt aus der universellen eigenschaft:
sei $D'$ mit projekionen [mm] $\pi_k'$ [/mm] ein weiteres direktes produkt. nun gibt es einen eindeutig bestimmten homomorphismus [mm] $\tau: [/mm] D' [mm] \to [/mm] D$ mit [mm] $\pi_k \circ \tau [/mm] = [mm] \pi_k'$ [/mm] nach der universtellen eigenschaft von $D$. entsprechend gibt es ein eindeutiges [mm] $\sigma: [/mm] D [mm] \to [/mm] D'$ mit [mm] $\pi_k' \circ \sigma [/mm] = [mm] \pi_k$ [/mm] (nach der universellen eigenschaft von $D'$) - mal dir am besten mal die entsprechenden diagramme hin, wenn dir das unlar ist, die rolle der "testgruppe" $H$ spielt im ersten fall $D'$, im zweiten fall $D$. nun wendet man noch einal die universelle eigenschaft von $D$ mit "testgruppe" $H = D$ und [mm] $\phi_k [/mm] = [mm] \pi_k$ [/mm] an. offenbar wird das entsprechende diagramm durch [mm] $\mathrm{id}_D$ [/mm] kommutativ ergänzt, aber nach obiger konstruktion kann man nachrechnen, das dies auch durch [mm] $\tau \circ \sigma$ [/mm] geschieht. mit der eindeutigkeit folgt dann ... die andere richtung analog.

ich hoffe das war halbwegs verständlich, ohne die diagramme ist das immer recht schwer zu erklären.

grüße
andreas

Bezug
                
Bezug
Universelle Eigenschaften: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:11 Mi 30.06.2010
Autor: physicus

Super, danke du hast mir sehr geholfen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]