matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteUnitärer Vektorraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Skalarprodukte" - Unitärer Vektorraum
Unitärer Vektorraum < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unitärer Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:12 Mi 02.09.2009
Autor: ball

Aufgabe
Sei [mm]V[/mm] ein endl.-dimens. unitärer Vektorraum und [mm]f[/mm] ein Endomorphismus von [mm]V[/mm]. Gilt [mm]=0[/mm] für alle [mm]v \in V[/mm], so ist  [mm]f=0[/mm].

Hallo allerseits.

Ich grüble schon länger über dieser Aufgabe aber komme auf keine Lösung.
Die Aussage gilt in einem euklidischen Vektorraum i.A. nicht (Bsp. f als Drehung um 90° im [mm]\IR^2[/mm]).

f besitzt auf jeden Fall einen Eigenwert (da das char. Polynom über [mm]\IC[/mm] zerfällt) und dieser muss 0 sein. Bringt aber nicht viel oder?

Die Lösung wird wahrscheinlich nicht sehr schwer sein, aber ich komme einfach nicht drauf... Würde mich über eine Antwort freuen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Danke & Grüße

        
Bezug
Unitärer Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 05:00 Do 03.09.2009
Autor: felixf

Hallo!

> Sei [mm]V[/mm] ein endl.-dimens. unitärer Vektorraum und [mm]f[/mm] ein
> Endomorphismus von [mm]V[/mm]. Gilt [mm]=0[/mm] für alle [mm]v \in V[/mm], so
> ist  [mm]f=0[/mm].
>  
> Ich grüble schon länger über dieser Aufgabe aber komme
> auf keine Lösung.
>  Die Aussage gilt in einem euklidischen Vektorraum i.A.
> nicht (Bsp. f als Drehung um 90° im [mm]\IR^2[/mm]).

Genau.

> f besitzt auf jeden Fall einen Eigenwert (da das char.
> Polynom über [mm]\IC[/mm] zerfällt) und dieser muss 0 sein. Bringt
> aber nicht viel oder?

Nun, du hast, dass jeder Eigenwert 0 ist, womit $f$ nilpotent ist (das char. Poly. ist von der Form [mm] $X^n$, [/mm] also gilt [mm] $f^n [/mm] = 0$).

Insbesondere kannst du eine Basis $A$ von $V$ finden, so dass [mm] $M_A^A(f) \in \IC^{n \times n}$ [/mm] eine echte obere Dreiecksmatrix ist. Das Skalarprodukt auf $V$ entspricht auf [mm] $\IC^n$ [/mm] dem Standardskalarprodukt.

Du hast also eine echte obere Dreiecksmatrix $B [mm] \in \IC^{n \times n}$ [/mm] mit [mm] $\langle [/mm] B v, v [mm] \rangle [/mm] = 0$ fuer alle $v [mm] \in \IC^n$. [/mm] Setzt du den Vektor $(1, 1, 0, [mm] \dots, [/mm] 0)$ ein, so erhaelst du dass der $(1, 2)$-Eintrag von $B$ 0 sein muss. Setzt du den Vektor $(1, 0, 1, 0, [mm] \dots, [/mm] 0)$ ein, so erhaelst du, dass der $(1, 3)$-Eintrag von $B$ 0 sein muss. Setzt du den Vektor $(0, 1, 1, 0, [mm] \dots, [/mm] 0)$ ein, so erhaelst du, dass der $(2, 3)$-Eintrag von $B$ 0 sein muss.

Wenn du so fortfaehrst (um zu zeigen, dass die $i$-te Spalte von $B$ 0 ist, verwendest du, dass die Spalten $1, [mm] \dots, [/mm] i-1$ alle 0 sind), bekommst du schliesslich, dass $B = 0$ sein muss, und damit $f = 0$.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]