matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraUnitäre Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Unitäre Matrix
Unitäre Matrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unitäre Matrix: Beweis
Status: (Frage) beantwortet Status 
Datum: 16:07 Fr 06.07.2007
Autor: E-Storm

Aufgabe
Beweise folgende Aussage: Eine Matrix A [mm] \in M_{n \times n}^\IC [/mm] ist (aufgefasst als Abbildung von [mm] V_{\IC}^n [/mm] nach [mm] V_{\IC}^n [/mm] ) genau dann unitär, wenn die Spalten eine Orthonormalbasis (des [mm] V_{\IC}^n [/mm] ) bilden.  

Also ich hab es folgendermaßen versucht zu zeigen.

=> Sei A eine ONB, dann gilt
Spaltenrang A = n = Rang A = Zeilenrang A  => A invertierbar

Ich stelle erstmal A und A* auf.
A = [mm] \pmat{ a_{11} & a_{12} & ... & a_{1n} \\ a_{21} & a_{22} & ... & a_{2n} \\ ... & ... & ... & ... \\ a_{n1} & a_{n2} & ... & a_{nn}} [/mm]

A* = [mm] \pmat{ \overline{a_{11}} & \overline{a_{21}} & ... & \overline{a_{n1}} \\ \overline{a_{12}} & \overline{a_{22}} & ... & \overline{a_{n2}} \\ ... & ... & ... & ... \\ \overline{a_{1n}} & \overline{a_{2n}} & ... & \overline{a_{nn}}} [/mm]

Nun A*  *  A  = [mm] \pmat{ a^1 * \overline{a^1t} =|a^1|^2 = 1 & ... & 0 \\ a^2 * \overline{a^1t} = 0 & ... & ... \\ ... & ... & ... \\ 0 & ... & a^n * \overline{a^nt} } [/mm]  

Bildet ja die Einheitsmatrix, reicht das für diesen Beweis??? Wie kann ich das begründen, dass das wirklich gilt???

Andere Seite:
<= Sei A [mm] \in M_{n \times n } [/mm] unitär mit [mm] {a^1, ... , a^n} [/mm]
aus A unitär folgt : A invertierbar und A* = A^-1

Rang A = n => [mm] a^i [/mm]  linear unabhängig.  

Ahm ja wie müsste ich das hier weiter führen, damit der Beweis abgeschlossen ist???




        
Bezug
Unitäre Matrix: Nachtrag
Status: (Antwort) fertig Status 
Datum: 20:03 Fr 06.07.2007
Autor: kantenkoenig

Es muss noch gezeigt werden, dass es nicht mehr Möglichkeiten gibt als die eine. Dazu nimmt man am besten eine andere Matrix deren Spalten nicht orthonomal zu anderen sind. Dann können schon mal die [mm]2,3,4,....,n[/mm] Spalten der Matrix [mm]A^{H}\cdot A[/mm] nicht [mm]0[/mm] sein(für alle wenn alle Spalten nicht orthogonal zueinander sind). Dann ist [mm]\mathrm{det}(A^{H}\cdot A[/mm]) [mm] \neq [/mm] 1 [/mm], also keine Einheitsmatrix, denn wenn [mm]A[/mm] eine unitäre Matrix sein soll, muss ja [mm]\mathrm{det}(A^{H})=\mathrm{det}(A^{-1})[/mm] gelten, aber da dies nicht der Fall ist, ist [mm]\mathrm{det}(A^{H})\neq \mathrm{det}(A^{-1})[/mm] und damit auch [mm]\mathrm{det}(A^{H}\cdot A[/mm]) [mm] \neq [/mm] 1 [/mm].
Im Prinzip reicht es, dass die [mm]2,3,4,....,n[/mm] Spalten der Matrix [mm]A^{H}\cdot A[/mm] nicht [mm]0[/mm] sind.  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]