matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesUngleichungsaufgabe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Sonstiges" - Ungleichungsaufgabe
Ungleichungsaufgabe < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichungsaufgabe: Frage zum Lösungsweg
Status: (Frage) beantwortet Status 
Datum: 01:24 Sa 24.02.2007
Autor: dicentra

Aufgabe
[mm]\bruch{24+x}{x}+1<5[/mm]

auf meinem blatt habe ich folgendes stehen:
[mm]\bruch{24+x}{x}+1<5 [/mm] a
[mm]\bruch{24}{x}+2<5 |-2 [/mm] b
[mm]\bruch{24}{x}<3 |*x |:3[/mm]
[mm]\bruch{24}{3}
Fallunterscheidung:
[mm]((x>0)\wedge(\bruch{24}{3}x)[/mm] c
[mm](8
[mm] \IL=((-\infty;0)\wedge(8;\infty)) [/mm]

kann mir das einer erklären?
1. wie kommt man von a nach b? wo ist das +x geblieben und warum steht da eine 2 und
2. wie kam man darauf die fallunterscheidung c so aufzustellen?

ich hab ne andere lösung, die ich verstehe, würde aber auch gerne diesen lösungsweg verstehen, danke schon mal im voraus.



        
Bezug
Ungleichungsaufgabe: Hinweise
Status: (Antwort) fertig Status 
Datum: 01:29 Sa 24.02.2007
Autor: Loddar

Hallo dicentra!


Zunächst zu Deiner Frage der Umformung: hier wurde der Bruch zerlegt und gekürzt:

[mm] $\bruch{24+x}{x}+1 [/mm] \ = \ [mm] \bruch{24}{x}+\bruch{x}{x}+1 [/mm] \ = \ [mm] \bruch{24}{x}+\blue{\bruch{1}{1}}+1 [/mm] \ = \ [mm] \bruch{24}{x}+\blue{1}+1 [/mm] \ = \ [mm] \bruch{24}{x}+2$ [/mm]


Da im Laufe der weiteren Umformung mit dem Term $x_$ multipliziert wird, muss hier eine Fallunterscheidung für $x \ > \ 0$  bzw.  $x \ < \ 0$ vorgenommen werden.
Schließlich kehrt sich das Ungleichheitszeichen bei der Multiplikation mit negativen Zahlen um.


Gruß
Loddar


Bezug
                
Bezug
Ungleichungsaufgabe: a-ha
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:53 Sa 24.02.2007
Autor: dicentra

eine umformung, *klick*, so wie sie nun da steht, alles klar.

und zum anderen, dann ist dabei das geschriebene also der fall (x>0) da sich das relationszeichen nicht verändert hat. und für fall 2 (x<0) (nicht aufgeschrieben) wurde das relationszeichen einfach wegen der multiplikation mit x umgedreht. so dass für (x<0) [mm] (x<\bruch{24}{3}) [/mm] rauskam. a-ha...

(und noch was, verdammt schnelle reaktion, kaum abgeschickt, da warste ja schon am beantworten, alle achtung.)



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]