matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisUngleichungen lösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Ungleichungen lösen
Ungleichungen lösen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichungen lösen: Ungleichungen
Status: (Frage) beantwortet Status 
Datum: 01:47 Fr 29.04.2005
Autor: Gerd52

Hallo Liebe Mathefreunde,
ich habe ein Problem mit einer Ungleichung.
[mm] |(x^2/2)-5 [/mm] |  [mm] \le [/mm] 3


ich komme leider zu widersprüchlichen lösungen. um eine ungleichung aufzulösen muss man eine fallunterscheidung vollziehen. nur habe ich gelesen, das man beim radizieren auch wieder eine fallunterscheidung machen muss. vielleicht kann mir einer die aufgabe mal vorrechnen und die fallunterscheidung in diesem beispiel erklären und die lösungsmenge angeben.

meine rechnung und ich weiß nicht weiter...
ich schreibe: [mm] 0,5x^2-5 \le [/mm] 3
[mm] 1.fall:0,5x^2 [/mm] -5  [mm] \ge [/mm] 0
[mm] x^2 \le10 [/mm]
ab hier weiß ich nicht weiter...soll es 3,2 sein oder muss ich wieder eine fallunterscheidung machen, da hier radiziert wird?
ich gehe mal von einer 3,2 aus.
also geht es weiter:
[mm] 0,5x^2 [/mm] -5 [mm] \le [/mm] 3
[mm] x^2 \le [/mm] 16

und hier das gleiche, entweder das ergebnis ist 4 oder ich muss wieder eine fallunterscheidung machen, da hier wieder radiziert wird.
wenn ich immer eine fallunterscheidung beim radizieren mache, dann bekomme ich keine vernünftige lösungsmenge...

das gleiche gilt jetzt für [mm] 0,5x^2 [/mm] -5 < 0

ich bedanke mich um jede hilfe



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ungleichungen lösen: Deine Lösungsansätze?
Status: (Antwort) fertig Status 
Datum: 08:57 Fr 29.04.2005
Autor: Roadrunner

Hallo Gerd!


Es wäre viel schöner, wenn Du uns Deine bisherigen Lösungsergebnisse hier mal mitteilen würdest, damit wir evtl. Fehler finden können.


Von "Vorrechnen" wird hier im MatheRaum nämlich nicht sehr viel gehalten.


Der Ansatz mit den Fallunterscheidungen klingt doch schon mal ganz gut ...


Gruß vom
Roadrunner


Bezug
        
Bezug
Ungleichungen lösen: Idee
Status: (Antwort) fertig Status 
Datum: 12:32 Fr 29.04.2005
Autor: MisterMarc

nur so als idee


-3  [mm] \le \bruch{x^{2}}{2} [/mm] - 5  [mm] \le [/mm] 3

und weiter, wahrscheinlich nach x aufösen

Bezug
        
Bezug
Ungleichungen lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:53 Fr 29.04.2005
Autor: Marcel

Hallo Gerd!

> Hallo Liebe Mathefreunde,
>  ich habe ein Problem mit einer Ungleichung.
>   [mm]|(x^2/2)-5[/mm] |  [mm]\le[/mm] 3

Wenn du mal in den Tipp von Mistermarc schaust:
Es gilt:
[mm]\left|\frac{x^2}{2}-5\right| \le 3[/mm]
[mm] $\gdw$ [/mm]
[mm]-3 \le \frac{x^2}{2}-5 \le 3[/mm]
[mm] $\gdw$ [/mm]
1.)[mm]-3 \le \frac{x^2}{2}-5[/mm] und 2.)[mm]\frac{x^2}{2}-5 \le 3[/mm]

Jetzt haben wir im Prinzip zwei Lösungsmengen zu bestimmen, und zwar die Lösungsmenge für 1.) (ich nenne sie [mm] $\IL_1$) [/mm] und die Lösungsmenge für 2.) (ich nenne sie [mm] $\IL_2$). [/mm] Danach mußt du noch, weil ja 1.) und 2.) erfüllt sein müssen, [mm] $\IL_1$ [/mm] und [mm] $\IL_2$ [/mm] schneiden (die Schnittmenge [mm] $\IL=\IL_1 \cap \IL_2$ [/mm] ist dann die Lösungsmenge der Gleichung [mm]\left|\frac{x^2}{2}-5\right| \le 3[/mm]).

Ich rechne dir mal die Lösungsmenge [mm] $\IL_1$ [/mm] für 1.) vor, [mm] $\IL_2$ [/mm] versuchst du bitte erstmal alleine zu berechnen:


Also zu [mm] $\IL_1$: [/mm]
Es gilt:
[mm]-3 \le \frac{x^2}{2}-5[/mm]
[mm] $\gdw$ [/mm]
$2 [mm] \le \frac{x^2}{2}$ [/mm]
[mm] $\gdw$ [/mm]
[mm] $x^2 \ge [/mm] 4$.

So, und nun gibt es (mindestens) zwei Möglichkeiten, weiterzurechnen:
Möglichkeit a):
[mm] $x^2 \ge [/mm] 4$
[mm] $\gdw$ [/mm]
$|x| [mm] \ge [/mm] 2$ (beachte: [mm] $\wurzel{x^2}=|x|$ [/mm] sowie [mm] $\wurzel{4}=2$; [/mm] beachte auch, dass die [mm] $\wurzel{\;}$-Fkt. [/mm] auf [mm] $[0,\;\infty[$ [/mm] (streng) monoton wachsend ist!)
[mm] $\gdw$ [/mm]
$x [mm] \le [/mm] -2$ oder $x [mm] \ge [/mm] 2$.

Möglichkeit b):
[mm] $x^2 \ge [/mm] 4$
[mm] $\gdw$ [/mm]
[mm] $x^2-4 \ge [/mm] 0$
[mm] $\gdw$ [/mm]
$(x+2)(x-2) [mm] \ge [/mm] 0$ (3e binomische Formel!)
[mm] $\gdw$ [/mm]
($x+2 [mm] \ge [/mm] 0$ und $x-2 [mm] \ge [/mm] 0$) oder ($x+2 [mm] \le [/mm] 0$ und $x-2 [mm] \le [/mm] 0$)
[mm] $\gdw$ [/mm]
($x [mm] \ge [/mm] -2$ und $x [mm] \ge [/mm] 2$) oder [mm] ($x\le [/mm] -2$ und $x [mm] \le [/mm] 2$)
[mm] $\gdw$ [/mm]
$x [mm] \ge [/mm] 2$ oder $x [mm] \le [/mm] -2$.

Aber egal, ob du nun Möglichkeit a) oder b) rechnest, am Ende erhältst du stets:
[mm]-3 \le \frac{x^2}{2}-5[/mm]
[mm] $\gdw$ [/mm]
$x [mm] \le [/mm] -2$ oder $x [mm] \ge [/mm] 2$.

Damit ergibt sich [mm] $\IL_1$ [/mm] zu:
[mm]\IL_1=\left\{x \in \IR:\;x \le -2\right\} \cup \left\{x \in \IR:\;x \ge 2\right\}=]-\infty,\;-2] \cup [2,\;\infty[[/mm]

(Das heißt nun genauer:
[mm]-3 \le \frac{x^2}{2}-5[/mm]
[mm] $\gdw$ [/mm]
$x [mm] \in \IL_1=]-\infty,\;-2] \cup [2,\;\infty[$.) [/mm]

So, und nun bist du an der Reihe:
Berechne zunächst [mm] $\IL_2$. [/mm] Und wenn du das hast, dann berechne weiter:
[mm] $\IL=\IL_1 \cap \IL_2$ [/mm]

(Am Ende weißt du dann:
Es gilt:
[mm]\left|\frac{x^2}{2}-5\right| \le 3[/mm]
[mm] $\gdw$ [/mm]
$x [mm] \in \IL=\IL_1 \cap \IL_2$.) [/mm]

Viele Grüße,
Marcel

Bezug
                
Bezug
Ungleichungen lösen: Ungleichungen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:17 Fr 29.04.2005
Autor: Gerd52

also das hilft mir schon wirklich weiter...ich werde mich nachher mal an die aufgabe machen und bedanke mich wirklich ganz herzlichst.

Gruß
Gerd

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]