matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionUngleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Induktion" - Ungleichungen
Ungleichungen < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichungen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:13 Mo 23.04.2007
Autor: Tanja1985

Aufgabe
Es seien a,b >0 und 0<p<1. Man zeige [mm] (a+b)^{p} \le a^{p} [/mm] + [mm] b^{p} [/mm]

Hallo ich soll folgende Aufgabe lösen, leider fehlt mir eine Idee, wie ich diese Aufgabe angehen könnte.
Kann mir jemand weiterhelfen?

Lg Tanja

        
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:45 Mo 23.04.2007
Autor: DirkG

Hallo Tanja,

zunächst mal kannst du die Ungleichung durch [mm] $a^p$ [/mm] dividieren, da steht dann
[mm] $$(1+x)^p \leq [/mm] 1 + [mm] x^p$$ [/mm]
mit [mm] $x=\frac{b}{a}$. [/mm] Wenn du also diese Ungleichung für alle positiven $x$ beweist, bist du fertig. Eine Möglichkeit dazu ist z.B. die Betrachtung der Funktion
$$f(x) = [mm] (1+x)^p [/mm] - [mm] x^p-1, \qquad x\geq [/mm] 0 [mm] \quad [/mm] .$$
Für die gilt $f(0)=0$ sowie $f'(x) = [mm] p\cdot \left[ (1+x)^{p-1} - x^{p-1} \right]$ [/mm] ... mehr verrate ich erstmal nicht.


Gruß,
Dirk

Bezug
                
Bezug
Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:37 Mo 23.04.2007
Autor: Tanja1985

Hallo ich versteh den ersten schritt nicht,wie kann ich denn in der klammer durch [mm] a^{p} [/mm] teilen?


lg tanja

Bezug
                        
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:59 Mo 23.04.2007
Autor: leduart

Hallo
Potenzgesetze:
[mm] u^p*v^p0=(uv)^p [/mm]

[mm] (1/a)^p*(a+b)^p=(1/a(a+b))^p=(1+b/a)^p [/mm]
alles klar? das musst du im Schlaf und ohne den Umweg können!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]