matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisUngleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Ungleichungen
Ungleichungen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichungen: Beweis n^3 < 2^n
Status: (Frage) beantwortet Status 
Datum: 13:41 Mo 24.10.2005
Autor: Deuterinomium

Ich habe diese Frage noch in keinem anderen Forum gestellt!

Hallo zusammen!

Folgende Problemstellung:

Determinate the smallest natural Number N such that for all [mm] n [mm] \ge [/mm] N [mm/]
[mm] [mm] n^3 [/mm] < [mm] 2^n [/mm] [mm/].

Don't forget to give a proof.

Ich habe nun mit der vollständigen Induktion gearbeitet:

[mm] A(n): [mm] n^3 [/mm] < [mm] 2^n [/mm]

n=1:

A(1): [mm] 1^3 [/mm] = 1 < 2 = [mm] 2^1 [/mm]

A(n) - A(n+1): [mm/]

[mm] [mm] (n+1)^3 [/mm] = [mm] n^3 [/mm] * ( [mm] \bruch{n+1}{n})^3 [/mm] < [mm] 2^n [/mm] * [mm] (\bruch{n+1}{n})^3 [/mm] [mm/]

Daraus ergibt sich [mm] (n+1)^3 [/mm] < 2^(n+1) genau dann wenn

[mm] [mm] \bruch{n+1}{n})^3 \le [/mm] 2 [mm/]

Durch Umformung gelange ich zu der Ungleichung:

[mm][mm] n^3 [/mm] - [mm] 3n^2 [/mm] - 3n -1 [mm] \ge [/mm] 0 [mm/]

Nun weiss ich allerdings nicht mit welcher Zahl die Polynomdivision sinnvoll wäre. Kann mal jemand aushelfen?



        
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:38 Mo 24.10.2005
Autor: angela.h.b.


Hallo,

daß das so nicht geklappt hat, ist kein Wunder!

Mit der vollständigen Induktion kann man wie mit anderen Verfahren nur solche Aussagen beweisen, welche stimmen, das ist ja klar.

Du behauptest  [mm] 2^n-n^3>0 [/mm] f.a. n [mm] \ge [/mm] 1.
Diese Aussage stimmt aber nicht. "Zufällig " ist sie richtig für n=1, aber schon bei n=2 sieht's trübe aus.

>  
> Determinate the smallest natural Number N such that for all
> [mm]n [mm]\ge[/mm] N [mm/] [mm][mm]n^3[/mm] < [mm]2^n[/mm] [mm/]. > [/mm][/mm]


Aus diesem Grund - um den armen Studenten Zeit für Fehlversuche zu ersparen - steht da wohl, daß man zunächst die kleinste Zahl bestimmen soll, für die die Aussage gilt.

Naja, das ist ja kein Hexenwerk.

Dann mach einen Induktionsanfang mit diesem N und anschließend weiter, wie gewohnt. Natürlich mußt Du dieses N dann auch in Deiner Abschätzung verwenden.

Viel Erfolg und
Gruß v. angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]