matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesUngleichung zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis-Sonstiges" - Ungleichung zeigen
Ungleichung zeigen < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:40 Do 20.06.2013
Autor: physicus

Hi Ho Forum

Ich habe zwei Funktionen [mm] $\rho,\phi$ [/mm] von [mm] $\mathbb{R}^n$ [/mm] in die rellen Zahlen. Dabei ist [mm] $\rho$ [/mm] positive homogen [mm] $\forall \lambda>0:\rho(\lambda x)=\lambda\rho(x)$, [/mm] subadditiv und translations invariant: [mm] $\froall c\in\mathbb{R}^n:\rho(x+c)=\rho(x)-c$. $\phi$ [/mm] is sogar linear. Nun nehmen wir an, dass für jedes [mm] $a\in\mathbb{R},x\in\mathbb{R}^n$: $\rho(x)>-a\Rightarrow \phi(x)>-a$. [/mm] Daraus will ich nun folgern, dass [mm] $\rho(x)\le \phi(x)$ [/mm] für alle $x$.

Ich wollte dies durch Widerspruch zeigen: Nehmen wir an, dass es ein $x$ gibt, so dass [mm] $\rho(x)> \phi(x)$. [/mm] Ich möchte natürlich zeigen, dass aus [mm] $\rho(x)>-a$ [/mm] nicht mehr folgt [mm] $\phi(x)>-a$. [/mm] Wie muss ich denn das $a$ wählen?

Danke / Gruss

phyiscus

        
Bezug
Ungleichung zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 Do 20.06.2013
Autor: fred97


> Hi Ho Forum
>  
> Ich habe zwei Funktionen [mm]\rho,\phi[/mm] von [mm]\mathbb{R}^n[/mm] in die
> rellen Zahlen. Dabei ist [mm]\rho[/mm] positive homogen [mm]\forall \lambda>0:\rho(\lambda x)=\lambda\rho(x)[/mm],
> subadditiv und translations invariant: [mm]\froall c\in\mathbb{R}^n:\rho(x+c)=\rho(x)-c[/mm].
> [mm]\phi[/mm] is sogar linear. Nun nehmen wir an, dass für jedes
> [mm]a\in\mathbb{R},x\in\mathbb{R}^n[/mm]: [mm]\rho(x)>-a\Rightarrow \phi(x)>-a[/mm].
> Daraus will ich nun folgern, dass [mm]\rho(x)\le \phi(x)[/mm] für
> alle [mm]x[/mm].
>  
> Ich wollte dies durch Widerspruch zeigen: Nehmen wir an,
> dass es ein [mm]x[/mm] gibt, so dass [mm]\rho(x)> \phi(x)[/mm]. Ich möchte
> natürlich zeigen, dass aus [mm]\rho(x)>-a[/mm] nicht mehr folgt
> [mm]\phi(x)>-a[/mm]. Wie muss ich denn das [mm]a[/mm] wählen?

[mm] a:=-\phi(x) [/mm]

FRED

>  
> Danke / Gruss
>  
> phyiscus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]