matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesUngleichung mittels MWS
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - Ungleichung mittels MWS
Ungleichung mittels MWS < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung mittels MWS: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:14 So 04.01.2015
Autor: Benn1993

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Hallo, ich bin neu hier und hoffe es ist in Ordnung hier eine neue Diskussion zu eröffnen:

ich habe folgendes Problem:
ln(1+1/x)>1/(1+x) für x>0
diese Gleichung wollte ich mit dem MWS beweisen.

Hierzu habe ich ln(1+1/x)'=-(1/((1 + 1/a) [mm] a^2)) [/mm] wobei 0<a<x
Nun habe ich diese Gleichung mit (f(x)-f(x=1)/(x-1) gleichgesetzt was mir schlussendlich: =-(1/((1 + 1/a) [mm] a^2))=(ln(1+1/x)-ln2)/(x-1) [/mm] beschert.
Meine Frage nun: habe ich den MWS richtig angewandt? und falls ja wie arbeite ich nun an der Ungleichung weiter? Hab schon alles erdenkliche probiert aber ich komme leider nicht drauf!
mfg


        
Bezug
Ungleichung mittels MWS: Antwort
Status: (Antwort) fertig Status 
Datum: 22:18 So 04.01.2015
Autor: Al-Chwarizmi


> Hallo, ich bin neu hier und hoffe es ist in Ordnung hier
> eine neue Diskussion zu eröffnen:

Natürlich ist das in Ordnung. Es ist ja der Sinn dieses
Forums, dass man hier Fragen zu mathematischen
Aufgaben erörtern kann.

  

> ich habe folgendes Problem:
>  ln(1+1/x)>1/(1+x) für x>0
>  diese Gleichung wollte ich mit dem MWS beweisen.

Es ist keine Gleichung, sondern eine Ungleichung.
  

> Hierzu habe ich ln(1+1/x)'=-(1/((1 + 1/a) [mm]a^2))[/mm] wobei
> 0<a<x    [haee]

>  Nun habe ich diese Gleichung mit (f(x)-f(x=1)/(x-1)
> gleichgesetzt was mir schlussendlich: =-(1/((1 + 1/a)
> [mm]a^2))=(ln(1+1/x)-ln2)/(x-1)[/mm] beschert.
>  Meine Frage nun: habe ich den MWS richtig angewandt? und
> falls ja wie arbeite ich nun an der Ungleichung weiter? Hab
> schon alles erdenkliche probiert aber ich komme leider
> nicht drauf!


Hallo Benn1993

           [willkommenmr]

Ich weiß nicht, ob zum Beweis der Ungleichung der Mittel-
wertsatz (der Differentialrechnung) wirklich das geeignetste
Mittel ist. Ist dies in deiner Aufgabenstellung so verlangt ?

Falls du aber den MWS einsetzen willst, solltest du klar
angeben, auf welche Funktion und für welches Intervall
du ihn anwenden willst. Gehen wir zum Beispiel von der
Formulierung des Satzes bei Wikipedia aus:

Es sei f: [a,b] [mm] \to \mathbb{R} [/mm] eine Funktion, die auf dem abgeschlossenen Intervall [a,b] (mit a < b) definiert und stetig ist. Außerdem sei die Funktion f im offenen Intervall (a,b) differenzierbar. Unter diesen Voraussetzungen gibt es mindestens ein [mm] x_0 \in [/mm] (a,b), so dass

[mm] f'\left(x_0\right)=\frac{f\left(b\right)-f\left(a\right)}{b-a} [/mm]
gilt.


Gib also bitte genau an, welche Funktion f du dabei
betrachten und was du für die Intervallgrenzen
a und b einsetzen willst.

In deinen bisherigen Erläuterungen kann ich davon
nichts erkennen. Falls du z.B. als untere Grenze (bei
Wikipedia das a) die Null nehmen möchtest, gibt es
ein Problem. Welches ?

LG  ,   Al-Chwarizmi

Bezug
                
Bezug
Ungleichung mittels MWS: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:19 Do 08.01.2015
Autor: Benn1993

Danke für die Antwort!
Die Ungleichung mittels MWS zu lösen ist nicht explizit angegeben, passte aber bei dem Übungsblatt zum Thema.
zum Intervall: x>0
Das der ln(0) undefiniert ist stellt sich schon mal als Problem dar....


Bezug
                        
Bezug
Ungleichung mittels MWS: Antwort
Status: (Antwort) fertig Status 
Datum: 12:28 Do 08.01.2015
Autor: fred97

Zu zeigen ist also

[mm] $ln(1+\bruch{1}{x})> \bruch{1}{1+x}$ [/mm]  für x>0.

Für x>0 ist [mm] ln(1+\bruch{1}{x})=ln(1+x)-ln(x)= \bruch{ln(1+x)-ln(x)}{(1+x)-x}= \bruch{f(1+x)-f(x)}{(1+x)-x}, [/mm]

wobei f(x):=ln(x)

Nach dem MWS gibt es ei s im Intervall (x, 1+x) mit

  [mm] ln(1+\bruch{1}{x})=f'(s)=\bruch{1}{s}. [/mm]

Jetzt Du.

FRED

Bezug
                        
Bezug
Ungleichung mittels MWS: Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 Do 08.01.2015
Autor: Al-Chwarizmi


> Danke für die Antwort!
>  Die Ungleichung mittels MWS zu lösen ist nicht explizit
> angegeben, passte aber bei dem Übungsblatt zum Thema.
>  zum Intervall: x>0
>  Das der ln(0) undefiniert ist stellt sich schon mal als
> Problem dar....


Hallo Benn

nur eine kleine Rückfrage: hast du meinen Tipp, den
ich in meiner zweiten Antwort gegeben hatte, verstanden
und angewandt ?

LG  ,   Al-Chw.  


Bezug
        
Bezug
Ungleichung mittels MWS: Tipp
Status: (Antwort) fertig Status 
Datum: 09:27 Mo 05.01.2015
Autor: Al-Chwarizmi

zu beweisen:

      $\ [mm] ln\,\left(\,1+\frac{1}{x}\,\right)\ [/mm] >\ [mm] \frac{1}{1+x}$ [/mm]   für x>0

Um dir zu einem Einstieg zur Lösung zu verhelfen, gebe
ich dir hier noch einen Tipp:

Forme den auf der linken Seite der Ungleichung stehenden
Logarithmus so um, dass da eine Differenz von Logarithmen
steht.
Schau dir dann diese Differenz genau an und betrachte
auch die Differenzen, welche in der Formel für den
Mittelwertsatz für eine Funktion f auftreten.
Dann sollte klar werden, für welche Funktion f und für
welches Intervall  [a,b]  man den MWS für die vorliegende
Aufgabe nutzbringend einsetzen könnte.

LG  ,    Al-Chwarizmi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]