matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationUngleichung mit Taylor zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentiation" - Ungleichung mit Taylor zeigen
Ungleichung mit Taylor zeigen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung mit Taylor zeigen: Verständnissfrage
Status: (Frage) beantwortet Status 
Datum: 00:31 Do 17.06.2010
Autor: SnafuBernd

Aufgabe
Zeigen Sie, dass für x [mm] \ge [/mm] 0 die Abschätzung
[mm] \sqrt{1+x} \ge [/mm] 1 + [mm] \frac{x}{2} [/mm] - [mm] \frac{x^2}{8} [/mm] gilt.

Hi,

also mir ist aufgefallen, dass wenn f(x) = [mm] \sqrt{1+x} [/mm] ist [mm] T_3(x,0) [/mm] = 1 + [mm] \frac{x}{2} [/mm] + [mm] \frac{x^2}{8} [/mm] ist. D.h. ich könnte mit f(x) - [mm] T_3(x,0) [/mm] = [mm] R_3(x,0) [/mm] arbeiten. Jedoch existiert [mm] R_3(x,0) [/mm]  gar nicht weil f nur 3 mal differenzierbar ist. Was bedeutet das nun? Dass das Taylorpolynom [mm] T_3(x,0)=f(x) [/mm] ist?

Snafu

        
Bezug
Ungleichung mit Taylor zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:37 Do 17.06.2010
Autor: reverend

Hallo Snafu,

wieso ist [mm] f(x)=\wurzel{1+x} [/mm] denn nur dreimal differenzierbar?

Grüße
reverend

Bezug
                
Bezug
Ungleichung mit Taylor zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:38 Do 17.06.2010
Autor: SnafuBernd

Hi
naja ich dachte weil [mm] f^3(x) [/mm] = 0 ist gibt es [mm] f^4(x) [/mm] nicht?

Snafu

Bezug
                        
Bezug
Ungleichung mit Taylor zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:44 Do 17.06.2010
Autor: reverend

Hallo,

>  naja ich dachte weil [mm]f^3(x)[/mm] = 0 ist gibt es [mm]f^4(x)[/mm] nicht?

Eine konstante Funktion kann man doch ableiten!
Nur ist f'''(x) nicht konstant...

Zeig doch mal Deine Ableitungen (nicht die bei x=0, sondern allgemein).

Grüße
rev


Bezug
                                
Bezug
Ungleichung mit Taylor zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:46 Do 17.06.2010
Autor: SnafuBernd

Hi,

f'(x) = 0,5(1+x) , f''(x) = 0,5 f'''(x) = 0
edit:
ups.. grad gemerkt, Potenz flasch reduziert....

Snafu

Bezug
                                        
Bezug
Ungleichung mit Taylor zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:06 Do 17.06.2010
Autor: reverend

Hallo nochmal,

>  ups.. grad gemerkt, Potenz flasch reduziert....

Jo. Also jetzt alles gut?

lg
rev


Bezug
                                                
Bezug
Ungleichung mit Taylor zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:25 Do 17.06.2010
Autor: SnafuBernd

Hi,

ja mit den Richtigen Ableitungen passt nun alles.
Danke!

Snafu

Bezug
                                                        
Bezug
Ungleichung mit Taylor zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:27 Do 17.06.2010
Autor: reverend

Da nich' für, wie man im Norden sagt.
Du hast es schließlich selbst gefunden - besser gehts nicht.

Viel Erfolg weiterhin!
rev

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]