matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisUngleichung mit Potenzen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Ungleichung mit Potenzen
Ungleichung mit Potenzen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung mit Potenzen: Frage
Status: (Frage) beantwortet Status 
Datum: 19:15 Do 04.08.2005
Autor: derwenzel

Hallo allerseits,

ich habe das Problem, dass ich aus n Elementen k auswähle mit Beachtung der Reihenfolge und Wiederholungen. Also habe ich [mm] n^k [/mm] Variationen. Das ist klar.
Nun aber folgendes:
Die n Elemente kann ich noch in Gruppen unterteilen und auch die k auszuwählenden sind entsprechend unterteilt, um jeweils innerhalb der Gruppen auszuwählen. Es geht hier im die Verteilung von k Rollen auf n Charaktere, und die Rollen bzw. Charaktere kann ich zum Beispiel nach männlich/weiblich unterscheiden.
Ich habe also [mm] n_1 + \ldots + n_i = n [/mm] Elemente/Charaktere
und [mm] k_1 + \ldots + k_i = k [/mm] Rollen.
Kann ich dann irgendwie zeigen, dass [mm] n_1^{k_1} + \ldots + n_i^{k_i} \le n^k [/mm] gilt, oder noch besser sogar vielleicht "kleiner" statt "kleiner gleich"???
Rein logisch gedacht erscheint mir die obige Gleichung zu gelten, habe das die Befürchtung irgendwas übersehen/falsch gemacht zu haben. Zudem wäre mir ein Beweis ganz Recht oder eine bekannte Ungleichung auf die ich mich Beziehen kann, um Fragen von "Ungläubigen" niederschmettern zu können. ;-)

Besten Dank schonmal vorab und Lob an dieses Forum (insbesondere auch an die Initiatoren, die Umsetzung mit TeX-Formeln ist genial). Schade, dass ich es erst so spät in meinem Studium entdeckt habe. Das hätte mir doch sicher oft helfen können.... Ach ja:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ungleichung mit Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 Do 04.08.2005
Autor: holy_diver_80

Hallo derwenzel,

Das geht ganz leicht. Es gilt:

[mm] $n_1^{k_1} [/mm] + [mm] \ldots [/mm] + [mm] n_i^{k_i}$ [/mm] < [mm] $n_1^{k_1} [/mm] * [mm] \ldots [/mm] * [mm] n_i^{k_i}$ [/mm] < [mm] $\mbox{max}(n_1, \ldots [/mm] , [mm] n_i)^{k_1 + \ldots + k_i}$ [/mm] < [mm] $n^{k_1 + \ldots + k_i}$ [/mm] = [mm] $n^k$ [/mm]

Die erste Ungleichung glit nur, wenn alle n größer als 1 sind.

Liebe Grüße,
Holy Diver

Bezug
                
Bezug
Ungleichung mit Potenzen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:03 Fr 05.08.2005
Autor: derwenzel

Wollte doch wenigstens kurz Danke sagen. :-)

Die Antwort kam ja schneller als ich dachte. Auch wenn ich mir selbst eingestehen muss, dass mir diese Antwort hätte selber einfallen müssen. Mein Matheprof würde mich jetzt sicher lynchen...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]