matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionUngleichung mit Fakultät
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Induktion" - Ungleichung mit Fakultät
Ungleichung mit Fakultät < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung mit Fakultät: Idee
Status: (Frage) beantwortet Status 
Datum: 17:38 So 28.10.2012
Autor: Lale22

Aufgabe
Für welche n elemet No gilt die Folgende Ungleichung??
n! >= [mm] 2^n [/mm]

Ich hab angefangen mit dem IA
n=0
Linke Seite 0! = 1
Rechte Seite [mm] 2^0 [/mm] =1
n=1
LS 1! = 1
RS [mm] 2^1 [/mm] = 2
=>  1! >= [mm] 2^1 [/mm] stimmt

Da es für n=0 gilt und auch n=1 gilt soll es für n+1 gelten.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

zZ (n+1)! >= [mm] 2^n+1 [/mm]

Ich weiß nicht wie ich weiter machen soll. Kann mir da jmd. helfen??

        
Bezug
Ungleichung mit Fakultät: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 So 28.10.2012
Autor: abakus


> Für welche n elemet No gilt die Folgende Ungleichung??
>   n! >= [mm]2^n[/mm]
>  Ich hab angefangen mit dem IA
>  n=0
>  Linke Seite 0! = 1
>  Rechte Seite [mm]2^0[/mm] =1
>  n=1
>  LS 1! = 1
>  RS [mm]2^1[/mm] = 2
>  =>  1! >= [mm]2^1[/mm] stimmt

Hallo,
n! hat die Werte
1, 1, 2, 6, 24, 120,...
und [mm] $2^n$ [/mm] hat die Werte
1, 2, 4, 8, 16, 32,...
Die Werte sind gleich bei n=0 (Sonderfall).
Dann ist eine Weile [mm] $2^n$ [/mm] der größere Wert, erst ab n=4 ist dann wieder n! der größere Wert.
Ein Induktionsbeweis kann also erst mit dem Induktionsanfang n=4 beginnen.
Gruß Abakus

>  
> Da es für n=0 gilt und auch n=1 gilt soll es für n+1
> gelten.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> zZ (n+1)! >= [mm]2^n+1[/mm]

Nein, z.z. ist [mm] (n+1)!$\ge 2^{n+1}$. [/mm]

>  
> Ich weiß nicht wie ich weiter machen soll. Kann mir da
> jmd. helfen??


Bezug
                
Bezug
Ungleichung mit Fakultät: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:38 So 28.10.2012
Autor: Lale22

Aufgabe
Für welche n element [mm] \IN0 [/mm] gilt die folgende Ungleichung??
n! [mm] \ge 2^{n} [/mm]

Danke erstmals für die schnelle Antwort, aber ich frage mich halt immernoch wie ich den Induktionsschritt bei einer Ungleichung machen kann. Dann hab ich doch im IS stehen:
n!(n+1) [mm] \ge 2^{n+1} [/mm] oder??
Wenn es richtig wie gehe ich vor und was ist mein Ziel??>


Bezug
                        
Bezug
Ungleichung mit Fakultät: Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 So 28.10.2012
Autor: Teufel

Hi!

Dein Ziel ist immer noch [mm] $(n+1)!\ge2^{n+1}$ [/mm] zu zeigen. Nun hast du $(n+1)!=n!*(n+1)$, wie du schon richtig geschrieben hast. Wende nun die Induktionsvorausstzung an [mm] ($n!\ge 2^n$). [/mm] Dann müsstest du noch zeigen, dass [mm] $n+1\ge [/mm] 2$ gilt, was aber klar ist. Setz das alles mal zusammen.

Bezug
                                
Bezug
Ungleichung mit Fakultät: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:36 So 28.10.2012
Autor: Lale22

Also lautet der IS

(n+1)! = [mm] n!\*(n+1) [/mm] > [mm] (n+1)\*2^{n}>2 \*2^{n} [/mm]

Ist das hiermit schon gezeigt??

Bezug
                                        
Bezug
Ungleichung mit Fakultät: Antwort
Status: (Antwort) fertig Status 
Datum: 22:45 So 28.10.2012
Autor: schachuzipus

Hallo Lale22,


> Also lautet der IS
>  
> (n+1)! = [mm]n!\*(n+1)[/mm] > [mm](n+1)\*2^{n}>2 \*2^{n}[/mm]

[mm] $\ge$ [/mm] laut Aufgabe und die Begrüngungen fehlen. Die Umformungen stimmen.

>  
> Ist das hiermit schon gezeigt??

Jein, der Korrektor wird sicher Punkte abziehen wegen fehlender Begründungen.

Zumindest an der Stelle, an der die IV ins Spiel kommt, solltest du das deutlich dranschreiben ;-)

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]