matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraUngleichung mit Betrag
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Ungleichung mit Betrag
Ungleichung mit Betrag < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung mit Betrag: Frage
Status: (Frage) beantwortet Status 
Datum: 00:17 Di 21.12.2004
Autor: Ciyoberti

Ich werde mich tierisch freuen, wenn mir jemad mit dieser Ungleichung weiter helfen kann.

  1 /|2x+4| [mm] \le [/mm] 1 /|3x-6|

Diese Beispiel fand ich in einem Buch. Als Lösung ist (2/5;10] angegeben und erstaunlicherweise steht (nur x ungleich 2) . Ich vermute irgend etwas stimmt mit die Lösung nicht. Ich kenne aber den weg nicht.
Ich habe einiger Bücher nachgeschaut aber einen ähnlichen konnte ich noch nicht finden. Ich suche es noch weiter aber vielleicht hat jemand den Weg für die Lösung schon im Kopf.

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
[http://www.uni-protokolle.de/foren/viewt/12180,0.html]


        
Bezug
Ungleichung mit Betrag: Antwort
Status: (Antwort) fertig Status 
Datum: 01:38 Di 21.12.2004
Autor: Marcel

Hallo Ciyoberti!
[willkommenmr] !!!

> Ich werde mich tierisch freuen, wenn mir jemad mit dieser
> Ungleichung weiter helfen kann.
>
> 1 /|2x+4| [mm]\le[/mm] 1 /|3x-6|

>

> Diese Beispiel fand ich in einem Buch. Als Lösung ist
> (2/5;10] angegeben und erstaunlicherweise steht (nur x
> ungleich 2) . Ich vermute irgend etwas stimmt mit die
> Lösung nicht. Ich kenne aber den weg nicht.

Okay! Tatsächlich braucht man, sollte die Ungleichung so wie oben angegeben sein, zumindest zunächst $x [mm] \not=-2$ [/mm] und $x [mm] \not=2$. [/mm] Wenn allerdings als Lösungsmenge bei der Rechnung das Intervall [m]\left(\frac{2}{5};10\right][/m] herauskommt, so liegt ja die $-2$ nicht in diesem Intervall. Die exakte Lösungsmenge wäre also [m]\IL=\left(\frac{2}{5};10\right]\setminus\{-2;2\}=\left(\frac{2}{5};10\right]\setminus\{2\}[/m].

Ich rechne dir mal die Lösung vor, aber ähnliche Aufgaben versuchst du dann demnächst zunächst alleine, okay? Wenn du dann irgendwo nicht weiterkommst, dann postest du uns bitte hier im Forum deine Rechung bis zu der Stelle, wo es hapert. Wir helfen dir dann schon. :-)

Also: Zunächst bemerken wir $x [mm] \not=2$, [/mm] $x [mm] \not=-2$. [/mm] Dann gilt:
[mm] $\frac{1}{|2x+4|}\le \frac{1}{|3x-6|}$ [/mm]
[mm] $\gdw$ [/mm]
[mm] $(\star)$ [/mm] $|3x-6| [mm] \le [/mm] |2x+4|$

1. Fall:
$3x-6 > 0$ (eigentlich $3x-6 [mm] \ge [/mm] 0$, aber da $x [mm] \not=2$ [/mm] kann $3x-6=0$ ja nicht gelten) und  $2x+4 > 0$ (eigentlich $2x+4 [mm] \ge [/mm] 0$, aber da $x [mm] \not=-2$ [/mm] kann $2x+4=0$ ja nicht gelten). Das ist gleichbedeutend mit $x > 2$.

Dann gilt:
[mm] $(\star)$ [/mm]
[mm] $\gdw$ [/mm]
$3x-6 [mm] \le [/mm] 2x+4$
[mm] $\gdw$ [/mm]
$x [mm] \le [/mm] 10$.

Das bedeutet, für $x > 2$ gilt [mm] $(\star)$ [/mm] und damit die ursprüngliche Ungleichung genau dann, wenn zusätzlich $x [mm] \le [/mm] 10$ gilt. Also gilt die ursprüngliche Ungleichung schonmal für alle $2 < x [mm] \le [/mm] 10$.

2. Fall:
$3x-6 > 0$ (eigentlich $3x-6 [mm] \ge [/mm] 0$, aber da $x [mm] \not=2$ [/mm] kann $3x-6=0$ ja nicht gelten) und $2x+4 < 0$. Das wäre gleichbedeutend mit [m]x > 2[/m] und $x<-2$. $x$ kann aber nicht gleichzeitig kleiner als $-2$ und größer als $2$ sein, also gibts den Fall gar nicht!

3. Fall:
$3x-6 < 0$ und $2x+4 > 0$ (eigentlich $2x+4 [mm] \ge [/mm] 0$, aber da $x [mm] \not=-2$ [/mm] kann $2x+4=0$ ja nicht gelten), also $-2 < x < 2$. Dann gilt
[mm] $(\star)$ [/mm]
[mm] $\gdw$ [/mm]
$-(3x-6) [mm] \le [/mm] 2x+4$
[mm] $\gdw$ [/mm]
$2 [mm] \le [/mm] 5x$
[mm] $\gdw$ [/mm]
$x [mm] \ge \frac{2}{5}$. [/mm]

Für $-2 < x < 2$ gilt also [mm] $(\star)$ [/mm] (und damit auch die ursprüngliche Ungleichung) genau dann, wenn zusätzlich $x [mm] \ge \frac{2}{5}$ [/mm] gilt. Also gilt die ursprüngliche Ungleichung auch für alle [m]x \in \left[\frac{2}{5};\,2\right)[/m].

4. Fall:
$3x-6 < 0$ und  $2x+4<0$. Das ist gleichbedeutend mit $x < 2$ und $x<-2$, also $x < -2$.
Dann gilt:
[mm] $(\star)$ [/mm]
[mm] $\gdw$ [/mm]
$-(3x-6)<-(2x+4)$

[mm] $\gdw$ [/mm]
$x > 10$.

Es kann aber nicht gleichzeitig $x < -2$ und $x > 10$ gelten, also gibts auch diesen Fall nicht bzw. für $x<-2$ ist die Lösungsmenge von [mm] $(\star)$ [/mm] die Leeremenge!

Andere Fälle kommen aber für [mm] $(\star)$ [/mm] (und damit auch für die ursprüngliche Ungleichung) nicht in Frage.

Das heißt, die ursprüngliche Ungleichung gilt für alle $x$, wie sie im ersten oder im dritten Fall stehen. Es gilt also:
[mm] $\frac{1}{|2x+4|}\le \frac{1}{|3x-6|}$ [/mm]
[mm] $\gdw$ [/mm]
[ [m]x \in (2;\,10][/m] oder [m]x \in \left[\frac{2}{5};\,2\right)[/m] ]
[mm] $\gdw$ [/mm]
[m]x \in (2;\,10] \cup \left[\frac{2}{5};\,2\right)[/m]
[mm] $\gdw$ [/mm]
$x [mm] \in \left[\frac{2}{5};\,10\right] \setminus\{2\}$. [/mm]

In der Lösung ist also tatsächlich ein kleiner Fehler vorhanden. $x$ darf nämlich auch den Wert [mm] $\frac{2}{5}$ [/mm] annehmen!

Viele Grüße,
Marcel

Bezug
                
Bezug
Ungleichung mit Betrag: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:32 Di 21.12.2004
Autor: Ciyoberti

Hallo Marcel !
ich danke dir erstmal. Ich bin bei der Arbeit. Ich habe deine Lösung mir ausgedruckt. Sobald ich zu Hause bin werde  mir ein Blatt und Stift in der Hand nehmen und dann kann ich ohne panik bearbeiten. :-)
Ich habe mich sehr gefreut ! Danke danke !

Bezug
                        
Bezug
Ungleichung mit Betrag: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:34 Di 21.12.2004
Autor: Marcel

Hallo Ciyoberti!

> Hallo Marcel !

>  ich danke dir erstmal. Ich bin bei der Arbeit. Ich habe
> deine Lösung mir ausgedruckt. Sobald ich zu Hause bin werde
>  mir ein Blatt und Stift in der Hand nehmen und dann kann
> ich ohne panik bearbeiten. :-)

Sehr gute Idee. Das ist die richtige Einstellung. :-)

>  Ich habe mich sehr gefreut ! Danke danke !

  
Gern geschehen! :-)

Viele Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]