matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisUngleichung lösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Ungleichung lösen
Ungleichung lösen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:44 Mi 03.05.2006
Autor: vicious

Aufgabe
[mm] n^{69} (\bruch{1}{3})^{n}<10^{-6} [/mm]

Wer kann mir helfen n zu berechnen???

Danke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ungleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 Mi 03.05.2006
Autor: felixf

Hallo!

> [mm]n^{69} (\bruch{1}{3})^{n}<10^{-6}[/mm]
>  Wer kann mir helfen n zu
> berechnen???

Versuchs doch mal mit $n = 0$.

Scherz beiseite: Schreib doch mal, was fuer Voraussetzungen das $n$ erfuellen soll, und ob du alle solche $n$ finden willst oder was auch immer...

LG Felix


Bezug
        
Bezug
Ungleichung lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:53 Mi 03.05.2006
Autor: vicious

*lach
ich glaube nicht, dass mein prof damit zufrieden wäre :)
ich suche einfach das n-te folgeglied, ab dem diese bedingung zutrifft...

Bezug
        
Bezug
Ungleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Mi 03.05.2006
Autor: riwe

hallo,
newton sagt, n = 0.82942822.....

Bezug
                
Bezug
Ungleichung lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:58 Mi 03.05.2006
Autor: vicious

ja, ich weiss, aber das bringt mich in diesem fall nicht weiter...da die bedingung auch ab 387 aufwärts gilt:)

Bezug
        
Bezug
Ungleichung lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:23 Mi 03.05.2006
Autor: vicious

Es geht hierbei um ein Folgeglied, ab dem diese Bedingung gilt. Laut Plotter und Einsetzen kommt n>=387 heraus. Die Frage ist einfach, wie ich das aus der obigen Gleichung berechnen kann.... :)

Bezug
        
Bezug
Ungleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:52 Mi 03.05.2006
Autor: riwe

ja wenn es ein folgeglied sein soll: auch da sagt newton n > 386 (n = 386.7651...)
tu´s einfach logarithmieren und die gleichung lösen
werner

Bezug
                
Bezug
Ungleichung lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:59 Mi 03.05.2006
Autor: vicious

Hallo Werner!
Das versuche ich schon die ganze Zeit, aber irgendeine Rechenregel scheint mir da entfallen zu sein...ich dreh mich nur im Kreise:(


Bezug
                        
Bezug
Ungleichung lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:24 Mi 03.05.2006
Autor: felixf

Hallo!

>  Das versuche ich schon die ganze Zeit, aber irgendeine
> Rechenregel scheint mir da entfallen zu sein...ich dreh
> mich nur im Kreise:(

Nun, exakt loesen kann man das auch nicht. Nur numerisch. Was du aber machen kannst: Du findest eine obere Schranke fuer [mm] $\log [/mm] x$ von der Form [mm] $\log [/mm] x [mm] \le [/mm] a x + b$ fuer $x > 0$ mit $a, b [mm] \in \IR$ [/mm] (lege eine Tangente an den Graphen des Logarithmus). Dann hast du $69 [mm] \log [/mm] n - n [mm] \log [/mm] 3 [mm] \le [/mm] 69 (a n + b) - n [mm] \log [/mm] 3 [mm] \overset{!}{<} [/mm] -6 [mm] \log [/mm] 10$. Damit du hier herausbekommst, dass es fuer alle $n [mm] \ge [/mm] N$ gilt fuer ein $N > 0$, musst du die Tangente an einer gross genugen Stelle anlegen (damit $a$ klein genug wird).

LG Felix


Bezug
        
Bezug
Ungleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:23 Mi 03.05.2006
Autor: riwe

ich habe es halt so gemacht (siehe felix):
[mm]69log(n)-n\cdot log(3)+6=0[/mm]
und das läßt sich z.b. mit dem startwert n = 200 mit newton lösen (N = 386,7....)
(bzw. auch mit n = 0,1 und der lösung n = 0,8.... s.o.)


Bezug
                
Bezug
Ungleichung lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:55 Mi 03.05.2006
Autor: felixf


> ich habe es halt so gemacht (siehe felix):
>  [mm]69log(n)-n\cdot log(3)+6=0[/mm]

Du benutzt also den Logarithmus zur Basis 10?

>  und das läßt sich z.b. mit dem
> startwert n = 200 mit newton lösen (N = 386,7....)
>  (bzw. auch mit n = 0,1 und der lösung n = 0,8.... s.o.)

Genau. Nur weisst du dann nicht, ob die Ungleichung auch fuer alle $n [mm] \ge [/mm] N$ gilt. Das kannst du dann durch die Abschaetzung beweisen: Lege die Tangente in [mm] $x_0 [/mm] = 386$ an; dies liefert eine obere Schranke. Und mit der bekommt man raus, dass die Ungleichung fuer alle $n [mm] \ge [/mm] 387$ stimmt.

LG Felix


Bezug
                        
Bezug
Ungleichung lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:38 Mi 03.05.2006
Autor: vicious

Vielen lieben Dank!!!

:)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]