matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenUngleichung in Folgenräumen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Ungleichung in Folgenräumen
Ungleichung in Folgenräumen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung in Folgenräumen: Tipp?
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:53 Mo 04.05.2009
Autor: junkx

Aufgabe
Für [mm] k\in \IN_{0}, [/mm] p>1, [mm] max(\bruch{1}{p}, [/mm] 1)-1 < s < [mm] \bruch{1}{p} [/mm] und [mm] |v_{kl}| \le \summe_{j\ge k} 2^{-(j-k)s} (\summe_{m \in N(j,k,l)} |u_{jm}|^p )^{\bruch{1}{p}} [/mm] gilt für alle [mm] \varepsilon [/mm] > 0: [mm] \summe_{l \in \IZ} |v_{kl}|^p \le c_{\varepsilon} \summe_{j\ge k} 2^{-(j-k)(s-\varepsilon)p} \summe_{m\in \IZ} |u_{jm}|^p. [/mm] Dabei ist N(j,k,l) [mm] \subset \IZ [/mm] mit ~ [mm] 2^{j-k} [/mm] Elementen (für jedes l [mm] \in \IZ) [/mm] und [mm] \bigcup_{l \in \IZ} [/mm] N(j,k,l) = [mm] \IZ [/mm]

Es handelt sich bei der "Aufgabe" um einen Typ von Abschätzung, welcher in einem mir vorliegenden Buch (im Zusammenhang mit Besov-Räumen [mm] B_{pq}^{s}(\IR), [/mm] bzw. den zugeordneten Folgenräumen [mm] b_{pq}) [/mm] immer wieder verwendet, aber nie erläutert wird. Ich benötige den verwendeten "Trick" für das Verständnis der Literatur für meine Diplomarbeit.
Alle auftretenden Reihen können als absolut konvergent vorrausgesetzt werden. Auftretende (von p,s,k) unabhängige Konstanten können vernachlässigt werden.
Mein Ansatzpunkt waren die Ungleichungen vom Typ [mm] (a+b)^q \le a^q [/mm] + [mm] b^q \le 2^{1-q} (a+b)^q, [/mm] mit [mm] a,b\ge [/mm] 0 und [mm] 0 Ich wäre dankbar für ein Stichwort (zb "Hölder"), wie man die Ungleichung der Aufgabenstellung beweisen könnte.
Vielen Dank im Vorraus

Ich habe die frage bisher in keinem anderem forum gestellt. (ich hoffe ich habe das richtige teilforum gewählt, wenn nicht verzeiht mir das bitte)

        
Bezug
Ungleichung in Folgenräumen: gelöst
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:30 Di 05.05.2009
Autor: junkx

habs jetzt rausbekommen. an ner andern stelle wo der gleiche trick beutzt wird wurdes klar. lustigerweise ist es tatsächlich nur hölder...
wens intressiert:
1. voraussetzung einsetzen
2. indextransformation r=j-k
3. zerlege [mm] 2^{-rs} [/mm] = [mm] 2^{-r(s-\varepsilon)} 2^{-r\varepsilon} [/mm]
4. hölder auf innere summe, sodass [mm] 2^{-r\varepsilon} [/mm] ein p' bekommt
5. geometrische reihe auf den p' term (das wird [mm] c_{\varepsilon}) [/mm]
6. indextransformation rückgängig machen
7. summe über l nach innen vor summe über m ziehn
8. summen zu summe über m [mm] \in \IZ [/mm] zusammenfassen
fertig :)

danke trotzdem an alle die sich das angeschaut haben
bye

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]