matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Ungleichung beweisen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis des R1" - Ungleichung beweisen
Ungleichung beweisen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:25 Mi 11.10.2006
Autor: Limeswissengeg0

Aufgabe
Beweisen Sie, dass für alle n [mm] \in \IN [/mm] gilt:
n! [mm] \le 2*(\bruch{n}{2})^n [/mm]

Hallo!Hier also mein Problem(chen):

Wir sollen das mit Induktion beweisen.
Mein Anfang: n=1
Ist einfach, setzt man ein und es ist eine wahre Aussage (1=1).
Nun nehme ich an, dass das für alle n gilt.
Jetzt muss ich noch zeigen, dass das für n+1 gilt.
Also einsetzen:
(n+1)! [mm] \le 2*(\bruch{n+1}{2})^{n+1} [/mm]
nach Definition ist (n+1)! = n!*(n+1)
[mm] 2*(\bruch{n+1}{2})^{n+1} [/mm] = [mm] 2*(\bruch{n+1}{2})^{n}*(\bruch{n+1}{2}) [/mm]
= [mm] (\bruch{n+1}{2})^{n}*(n+1) [/mm]
also könnte ich jetzt schreiben:
n!*(n+1) [mm] \le (\bruch{n+1}{2})^{n}*(n+1) [/mm]
wenn ich jetzt auf beiden Seiten der Ungleichung (n+1) dividiere, bekomme ich:
n! [mm] \le (\bruch{n+1}{2})^{n} [/mm]
und an dieser Stelle komme ich nicht weiter, hab mich sicher irgendwo eher verrannt.
Ich bitte Euch einfach mal um einen Tipp oder Hinweis, muss (darf!) nicht gleich die ganze Lösung sein.
Danke!

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Ungleichung beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:11 Fr 13.10.2006
Autor: mathemaduenn

Hallo limes,
Bisher richtig bleibt noch zu zeigen
[mm] $2*(\bruch{n}{2})^{n}\le (\bruch{n+1}{2})^{n}$ [/mm]
oder
[mm] $2*n^n \le (n+1)^n$ [/mm]
Als Tipp MBBinomischer Lehrsatz
viele Grüße
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]