matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationUngleichung beweisen.Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Ungleichung beweisen.Integral
Ungleichung beweisen.Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung beweisen.Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:47 Fr 15.06.2012
Autor: Ganz

Hallo, ich muss zeigen, dass gilt
[mm] \integral_{0}^{1}{\wurzel{\bruch{x}{x+1}}}dx \le \bruch{2}{3} [/mm]
Gegeben sind die Funktionen [mm] f:[0,1]-->\IR, x-->\wurzel{\bruch{1}{x+1}} [/mm] und g:[0,1]--> [mm] \IR, x-->\wurzel{x} [/mm]
Also ich dachte, dass mir dass f*g gleich dem integral ist dass ich zeigen soll daher habe ich zuerst das integral von f bestimmt und dann von g und dann 0 und 1 eingesetzt. Nur dann habe ich das direkt [mm] \integral_{0}^{1}{\wurzel{\bruch{x}{x+1}}}dx [/mm]  bei wolframalpha eingegeben und habe einen wert bekommen der leicht von meinem Wert abweicht.
Hier sind meine ergebnisse [mm] F(x)=2\wurzel{x+1} [/mm] und G(x)= [mm] \bruch{2x^{3//2}}{3} [/mm]
und F(x)*G(x)= 0,5522847
und direkt das  [mm] \integral_{0}^{1}{\wurzel{\bruch{x}{x+1}}}dx [/mm] =0,53284

Wo liegt mein Fehler?? Kann man das überhaupt so machen??

Gruß

        
Bezug
Ungleichung beweisen.Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 Fr 15.06.2012
Autor: leduart

Hallo
du sollst ja nicht das integral ausrechnen, sondern abschätzen. Was weisst du darüber allgemein? dann ist die Aufgabe sehr einfach.
2. Integral von f*g ist etwas völlig anderes als Integral f* Integral g
mach das etwa mal für f=x und g=x für in dem gegebenen intervall.
Gruss leduart


Bezug
                
Bezug
Ungleichung beweisen.Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:34 Sa 16.06.2012
Autor: Ganz

Hallo, danke erstmal.
> Hallo
>  du sollst ja nicht das integral ausrechnen, sondern
> abschätzen.

Ja ich dachte, dass das auch so geht.Aber wie denn Abschätzen?? Das kann ich meistens nicht.

> Was weisst du darüber allgemein? dann ist die
> Aufgabe sehr einfach.

Meinst du allgemein über Integrale? Oder dass das hier vorliegende Integral aus den funktionen f und g zusammengesetzt ist. Ist mir nicht ganz klar.

>  2. Integral von f*g ist etwas völlig anderes als Integral
> f* Integral g
>  mach das etwa mal für f=x und g=x für in dem gegebenen
> intervall.

Ja hast recht. War mir irgendwie nicht klar.

>  Gruss leduart
>  

Gruß

Bezug
                        
Bezug
Ungleichung beweisen.Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:18 Sa 16.06.2012
Autor: fred97


> Hallo, danke erstmal.
>  > Hallo

>  >  du sollst ja nicht das integral ausrechnen, sondern
> > abschätzen.
> Ja ich dachte, dass das auch so geht.Aber wie denn
> Abschätzen?? Das kann ich meistens nicht.

[mm] \wurzel{\bruch{x}{x+1}} \le \wurzel{x} [/mm]

FRED

>  
> > Was weisst du darüber allgemein? dann ist die
> > Aufgabe sehr einfach.
>  Meinst du allgemein über Integrale? Oder dass das hier
> vorliegende Integral aus den funktionen f und g
> zusammengesetzt ist. Ist mir nicht ganz klar.
>  
> >  2. Integral von f*g ist etwas völlig anderes als Integral

> > f* Integral g
>  >  mach das etwa mal für f=x und g=x für in dem
> gegebenen
> > intervall.
>  Ja hast recht. War mir irgendwie nicht klar.
>  >  Gruss leduart
>  >  
> Gruß


Bezug
                                
Bezug
Ungleichung beweisen.Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:02 Sa 16.06.2012
Autor: Ganz

Hallo, danke.
Wirklich so einfach?
Eine Frage hätte ich dann noch warum ist in der Aufgabenstellung die funktion f angegeben, wenn schon gilt
[mm] \integral_{0}^{1}{\wurzel{\bruch{x}{x+1}}}dx \le \integral_{0}^{1}{\wurzel{x}}= \bruch{2}{3}? [/mm]

Bezug
                                        
Bezug
Ungleichung beweisen.Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 22:16 Sa 16.06.2012
Autor: leduart

Hallo
1.richtig
2. damit du abschäetzen lernst.
damit du es wirklich lernst zeige, dass das Integral >0.5 ist!
also [mm] 1/2<\integral_{0}^{1}{\wurzel{\bruch{x}{x+1}}}dx<2/3 [/mm]
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]