matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInterpolation und ApproximationUngleichung, Tschebytscheff
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Interpolation und Approximation" - Ungleichung, Tschebytscheff
Ungleichung, Tschebytscheff < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung, Tschebytscheff: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:35 Di 19.04.2011
Autor: Teufel

Aufgabe
Sei [mm] T_{n+1}=2^n*(x-x_0)*...*(x-x_n) [/mm] mit [mm] x_i=cos(\frac{2i+1}{2(n+1)}\pi) [/mm] für alle i=0,..,n. (Linearfaktorisierung vom (n+1)-ten Tschebytscheff-Polynom).

Zeige: [mm] ||T_{n+1}||_{\infty}\le 2^n||(x-y_0)*...*(x-y_n)||_{\infty} [/mm] für alle [mm] y_0,...,y_n\in[-1,1]. [/mm]

Hi!

Hier komme ich irgendwie nicht weiter. Als Hinweis wurde gegeben, dass man annehmen soll, dass die Ungleichung nicht stimmt und dann das Polynom [mm] T_{n+1}(x)-2^n*(x-y_0)*...*(x-y_n) [/mm] betrachten soll. Aber irgendwie erkenne ich da nicht viel.

Ich weiß nur, dass [mm] T_{n+1}(x)-2^n*(x-y_0)*...*(x-y_n) [/mm] höchstens vom Grad n ist und damit dann auch höchstens n Nullstellen hat. Wenn ich annehme, dass die Ungleichung für bestimmte [mm] y_i [/mm] nicht gilt, dann folgt auch nur, dass
[mm] ||T_{n+1}(x)-2^n*(x-y_0)*...*(x-y_n)||_{\infty}\ge||T_{n+1}||_{\infty}-2^n||(x-y_0)*...*(x-y_n)||_{\infty}>0 [/mm] gilt und [mm] T_{n+1}(x)-2^n*(x-y_0)*...*(x-y_n) [/mm] daher nicht konstant sein kann.

Weiß da jemand mehr als ich?

Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]