matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionUngleichung, Reihe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Induktion" - Ungleichung, Reihe
Ungleichung, Reihe < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung, Reihe: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:11 Fr 28.09.2007
Autor: muh_und_milch

Aufgabe
Beweisen Sie durch vollst. Induktion

[mm]1 + \bruch{n}{2} \le \summe_{k=1}^{2^n} \bruch{1}{k} \le n + \bruch{1}{2} [/mm]

Hallo,

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Der Induktionsanfang is kein Problem. Sowie das Vergleichen des 1. Terms mit dem 3.Term ist nicht schwer

Nur leider weiß ich bei der Aufgabe nicht genau, wie ich die partialsumme von p(n) in p(n+1) überführen soll.
Ob es reicht zu schreiben [mm]\summe_{k=1}^{2^n} \bruch{1}{k} + \summe_{k=2n +1}^{2^n +2^2} \bruch{1}{k} ?? [/mm]

Vielen Dank für die Hilfe.

gruß muh

        
Bezug
Ungleichung, Reihe: zweigeteilt vorgehen
Status: (Antwort) fertig Status 
Datum: 12:34 Fr 28.09.2007
Autor: Roadrunner

Hallo muh!


Du musst hier im Prinzip zwei vollständige Induktionen führen, da Du diese Ungleichheitskette in zwei Ungleichungen zerlegen musst:

$$1 + [mm] \bruch{n}{2} [/mm] \ [mm] \le [/mm] \ [mm] \summe_{k=1}^{2^n} \bruch{1}{k}$$ [/mm]
[mm] $$\summe_{k=1}^{2^n} \bruch{1}{k} [/mm] \ [mm] \le [/mm] \ n + [mm] \bruch{1}{2}$$ [/mm]

Gruß vom
Roadrunner


Bezug
        
Bezug
Ungleichung, Reihe: Partialsummen
Status: (Antwort) fertig Status 
Datum: 14:45 Fr 28.09.2007
Autor: Roadrunner

Hallo muh!


Deine Zerlegung in die beiden Partialsummen stimmt so nicht. Zumindest für die erste Teil-Ungleichung (= linker Teil) hilft folgende Zerlegung weiter:

[mm] $$\summe_{k=1}^{2^{n+1}} \bruch{1}{k} [/mm] \ = \ [mm] \summe_{k=1}^{2^n} \bruch{1}{k} [/mm] + [mm] \summe_{k=2^n +1}^{2^{n+1}} \bruch{1}{k} [/mm] \ = \ [mm] \summe_{k=1}^{2^n} \bruch{1}{k} [/mm] + [mm] \summe_{k=2^n +1}^{2*2^n} \bruch{1}{k}$$ [/mm]
Auf den ersten Summanden nun die Induktionsvoraussetzung anwenden; bei der 2. Reihe kannst Du nach unten gegen das Anfangsglied abschätzen.


Für die 2. Induktionshälfte ist mir noch nichts richtiges eingefallen [kopfkratz3] .


Gruß vom
Roadrunner


Bezug
                
Bezug
Ungleichung, Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:49 Fr 28.09.2007
Autor: muh_und_milch

wirklich guter ansatz! vllt finde ich bis morgen eine idee für die andere abschätzung


grüße muh

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]