matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesUngleichung Logarithmus/ Summe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Ungleichung Logarithmus/ Summe
Ungleichung Logarithmus/ Summe < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung Logarithmus/ Summe: Quelle oder Idee?
Status: (Frage) beantwortet Status 
Datum: 17:00 Di 26.06.2012
Autor: insomniac

Aufgabe
Für $A,B > 0$ [mm] gilt:\\ [/mm]
[mm] $\frac{A}{B} \log \frac{1+B(n-1)}{1+Bn_{0}} \leq \sum \limits_{j=n_{0}}^{n} \frac [/mm] {A}{1+Bj} [mm] \leq \frac{A}{B} \log \frac{1+Bn}{1+B(n_{0}-1)}$ [/mm]

Ich bin während des Beweises eines Satzes auf diese Ungleichung gestoßen und versuche seitdem, eine Quelle zu dieser oder einen eigenständigen Beweis zu formulieren. In dem Buch, in dem ich die Ungleichung (angewendet, nicht in Form eines eigenständigen Satzes) gefunden habe, wird nur auf 'usual inequalities between sums and integrals' verwiesen. Ich habe mal mit dem Bruch [mm] $\frac{A}{B}$ [/mm] multipliziert und konnte das $A$ somit aus der Fragestellung eliminieren. Hat jemand eine Ahnung wo diese Ungleichung herkommt?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ungleichung Logarithmus/ Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:13 Di 26.06.2012
Autor: Leopold_Gast

Der Faktor [mm]A[/mm] der Ungleichung ist überflüssig.

Es gilt

[mm]\int_{B \cdot n_0}^{B \cdot (n+1)} \frac{\mathrm{d}x}{1+x} \qquad \leq \qquad \sum_{j=n_0}^n \frac{B}{1 + B \cdot j} \qquad \leq \qquad \int_{B \cdot (n_0-1)}^{B \cdot n} \frac{\mathrm{d}x}{1+x}[/mm]

Denn zum linken Integral ist die Summe eine Obersumme, zum rechten eine Untersumme. Was nur noch irritiert, ist in deiner Ungleichung links das [mm]n-1[/mm]. Nach der Überlegung oben müßte da [mm]n+1[/mm] stehen.

Bezug
                
Bezug
Ungleichung Logarithmus/ Summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:46 Di 26.06.2012
Autor: insomniac

Hallo Leopold,

vielen Dank für deine Hilfe, so hab ich das noch gar nicht betrachtet. Das macht auf jeden Fall Sinn. :)
Zu deiner Überlegung, dass es es links $n+1$ statt $n-1$ heißen müsste: So wie ich das sehe, stimme ich dir zu, aber es gilt doch auf jeden Fall [mm] $\integral_{Bn_{0}}^{B(n-1)} \frac{\mathrm{d}x}{1+x} \leq \integral_{Bn_{0}}^{B(n+1)}\frac{\mathrm{d}x}{1+x}$, [/mm] oder? Kleineres Integral, kleinerer Wert? Insofern müsste ja die Ungleichung trotzdem gelten.

Bezug
                        
Bezug
Ungleichung Logarithmus/ Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:21 Di 26.06.2012
Autor: Leopold_Gast

Ja, die Ungleichung gilt auch so, ist aber unnötig unscharf. Vermutlich ein Druckfehler. Wenn mit der Ungleichung weitergerechnet wird, kann man ja herausfinden, zu welcher Form der Ungleichung die Rechnung paßt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]