matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesUngleichung Beweisen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - Ungleichung Beweisen
Ungleichung Beweisen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung Beweisen: Aufgabe Lösungsweg
Status: (Frage) beantwortet Status 
Datum: 18:30 Sa 21.04.2007
Autor: Decehakan

Aufgabe
für alle a , b  gilt nicht negativen zahlen

2Aufgabe  [mm] ab\le (\bruch{a+b}{2})^{2} [/mm]
1.Aufgabe für alle e >0  [mm] ab\le\bruch{1}{2e}*a²+ \bruch{e}{2}*b² [/mm]

ich muss zeigen das  die ungleichung für die 1 Aufgabe eins und 2  ,ich weiß nicht wie ich es beweisen soll ,hoffe ihr könnt mir den lösungsweg zeigen ,damit ich auch weiß  ,wie man so etwas beweißt

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ungleichung Beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:42 Sa 21.04.2007
Autor: Hund

Hallo,

du musst doch einfach nur nachrechnen. Bei 1. zum Beispiel mit 4 multiplizieren und binomische Formel anwenden. Dann bekommst du eine wahre Aussage.

Ich hoffe, es hat dir geholfen.

Gruß
Hund

Bezug
                
Bezug
Ungleichung Beweisen: aber
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:44 Sa 21.04.2007
Autor: Decehakan

was passiert dann mit den e ? mit 4 multiplizieren heben sich die e nicht weg

Bezug
                        
Bezug
Ungleichung Beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:54 Sa 21.04.2007
Autor: Hund

Das war für die erste Aufgabe gemeint.

Bezug
        
Bezug
Ungleichung Beweisen: Tipp Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 19:21 Sa 21.04.2007
Autor: nad21

Wenn du Aufgabe 1 nachgerechnet hast, kannst du damit Teil 2 zeigen. Setze [mm] a:=\bruch{a}{\wurzel{e}} [/mm] und [mm] b:=\wurzel{e}b [/mm] und vereinfache die Ungleichung die du bekommst noch etwas.

Bezug
                
Bezug
Ungleichung Beweisen: aha
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:27 Sa 21.04.2007
Autor: Decehakan

und wie kommt man darauf das  a :=a durch wurzel e und b:=wurzel eb ist ? also ansatz

Bezug
                        
Bezug
Ungleichung Beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:39 Sa 21.04.2007
Autor: nad21

Wie man darauf kommt? Nun, ich wuerde mal sagen, das kann man sehen.
Gegebenenfalls muss man etwas rumprobieren.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]