matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesUngleichung Beweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Sonstiges" - Ungleichung Beweis
Ungleichung Beweis < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung Beweis: Vorgehensweise/Struktur
Status: (Frage) beantwortet Status 
Datum: 12:45 Do 29.04.2010
Autor: Blaub33r3

Aufgabe
[mm] a,b,c,d\in \IQ [/mm] mit b>0 und d>0 und [mm] \bruch{a}{b}<\bruch{c}{d} [/mm]

Beweisen Sie:

[mm] \bruch{a}{b}<\bruch{a+c}{b+d}<\bruch{c}{d} [/mm]

Hey Leute,

Also analog bzw einfacher ausgedrückt, soll ich zeigen, es gilt a<b<c.
Kann ich das beweisen, in dem ich zeige a<b ^ b<c => a<b<c ?(Also quasi eine ausführliche transitivität)?^^

gilt offensichtlich immer, würde ich jetzt einfach mal so sagen.

(1) [mm] \bruch{a+c}{b+d}<\bruch{c}{d} [/mm]

Nach Anwendung von ein paar Rechnenregeln komme ich zu da<cb bzw [mm] \bruch{a}{b}<\bruch{c}{d} [/mm]  , das wäre ja die Voraussetzung der Aufgabe, also eine gültige Aussage und damit wahr. Ist damit nun (1) bewiesen?

(2) [mm] \bruch{a}{b}<\bruch{a+c}{b+d} [/mm]   Das habe ich analog bewiesen.

Aus (1) und (2) folgt nun [mm] \bruch{a}{b}<\bruch{a+c}{b+d}<\bruch{c}{d} [/mm]

Ist das so in Ordnung oder mache ich irgendwas falsch oder etwas zu kompliziert?

Grüße blaub33r3




        
Bezug
Ungleichung Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 Do 29.04.2010
Autor: angela.h.b.


> [mm]a,b,c,d\in \IQ[/mm] mit b>0 und d>0 und
> [mm]\bruch{a}{b}<\bruch{c}{d}[/mm]
>  
> Beweisen Sie:
>  
> [mm]\bruch{a}{b}<\bruch{a+c}{b+d}<\bruch{c}{d}[/mm]
>  Hey Leute,
>  
> Also analog bzw einfacher ausgedrückt, soll ich zeigen, es
> gilt a<b<c.

Hallo,

???
Nee, das sollst Du nicht zeigen, sondern die Aussage, die da steht.

>  Kann ich das beweisen, in dem ich zeige a<b ^ b<c => a<b<c

> ?(Also quasi eine ausführliche transitivität)?^^
>  
> gilt offensichtlich immer, würde ich jetzt einfach mal so
> sagen.

Ich blick' grad nicht so durch, was Du planst...

Vielleicht sagst du mal die Aufgabe.
Was zu eigen ist, hängt ja generell davon ab. was schon gezeigt wurde.


>  
> (1) [mm]\bruch{a+c}{b+d}<\bruch{c}{d}[/mm]
>  
> Nach Anwendung von ein paar Rechnenregeln komme ich zu
> da<cb bzw [mm]\bruch{a}{b}<\bruch{c}{d}[/mm]  , das wäre ja die
> Voraussetzung der Aufgabe, also eine gültige Aussage und
> damit wahr. Ist damit nun (1) bewiesen?

Wenn Du zeigen konntest, daß [mm] $\bruch{a+c}{b+d}<\bruch{c}{d} \gdw \bruch{a}{b}<\bruch{c}{d},$ [/mm] dann ist die teilaussage bewiesen.

Mit [mm] \bruch{a+c}{b+d}<\bruch{c}{d} [/mm] ==> [mm] \bruch{a}{b}<\bruch{c}{d} [/mm] ist sie nicht bewiesen.

>  
> (2) [mm]\bruch{a}{b}<\bruch{a+c}{b+d}[/mm]   Das habe ich analog
> bewiesen.

Analoge Antwort.

>  
> Aus (1) und (2) folgt nun
> [mm]\bruch{a}{b}<\bruch{a+c}{b+d}<\bruch{c}{d}[/mm]

Ja.

>  
> Ist das so in Ordnung oder mache ich irgendwas falsch

Keine Ahnung, wir sehen ja nicht, was Du tust.

(Aber ich kapiere jetzt, was Du oben eigentlich sagen wolltest, und ich antworte Dir: das kannst Du ohne Beweis verwenden.)

Gruß v. Angela


Bezug
                
Bezug
Ungleichung Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:08 Do 29.04.2010
Autor: Blaub33r3

Alles klar, jetzt weiß ich bescheid :)

Danke!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]