matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesUngleichung - liminf
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Sonstiges" - Ungleichung - liminf
Ungleichung - liminf < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung - liminf: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:21 Mo 28.04.2008
Autor: ski-freak

Aufgabe
Sei t eine berechenbare, totale Funktion mit der Eigenschaft [mm] \liminf_{n\rightarrow\infty}\bruch{t(n)}{n} > 1 [/mm] und sei c > 1.

Man bestimme m so, dass [mm] n + \bruch{1}{m}n + c\bruch{1}{m}t(n) \le t(n) [/mm]

Hallo,

ich komme bei obiger Ungleichung einfach nicht auf das m (in Abhängigkeit von c - alles andere macht ja kaum Sinn)!

Der Hintergrund der Aufgabe: Diese Ungleichung stammt aus einem Beweis zur Zeitabschätzung von Turingmaschinen, und m ist die Blocklänge, die gewählt werden muss, damit man eine Turingmaschine erhält, die schneller rechnet als die Ursprüngliche. Man zeigt also sowas wie:

DTIME(t) = DTIME(ct) , wobei DTIME(t) die Menge aller Sprachen ist, die von einer Turingmaschine in Zeit <= t entschieden werden können.

Klar ist, dass man folgendes erhalten muss: Wenn t(n) = n gilt, dann muss m gegen unendlich streben. Das liegt ja daran, dass ich eine Turingmaschine niemals auf Linearzeit runterbrechen kann. D.h. der Satz gilt für t(n) = n nicht, was auch verständlich ist. Nur für die Funktionen t, welche die obige Bedingung erfüllen, muss eine endlichere Blocklänge rauskommen, nur wie macht man das genau? Ich kann die Gleichung natürlich soweit umformen, dass ich folgendes erhalte:

[mm] m \ge \bruch{1+c\bruch{t(n)}{n}}{\bruch{t(n)}{n}-1} [/mm]

Nur ist das irgendwie null aussagekräftig :(

Danke

Gruß, ski-freak

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ungleichung - liminf: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mi 30.04.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]