matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Ungleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis des R1" - Ungleichung
Ungleichung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:35 Fr 23.03.2012
Autor: Fry


Hallo zusammen,

würde gerne zeigen, dass für alle [mm]n\in\IN,\delta>0,t>0[/mm]
gilt, dass [mm]e^{-\frac{t}{n}}\le\frac{e^{t+\delta}}{\delta}[/mm].
Könnte jemand einen Tipp geben?

Vielen Dank!
Fry


        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:58 Fr 23.03.2012
Autor: abakus


>
> Hallo zusammen,
>  
> würde gerne zeigen, dass für alle [mm]n\in\IN,\delta>0,t>0[/mm]
>  gilt, dass
> [mm]e^{-\frac{t}{n}}\le\frac{e^{t+\delta}}{\delta}[/mm].

Hallo,
beidseitige Multiplikation mit [mm]\delta[/mm] und  [mm]e^{\frac{t}{n}}[/mm] führt zur äquivalenten (warum?) Ungleichung [mm]\delta \le e^{\delta+t+\bruch{t}{n}}=e^{\delta}*e^{t+\bruch{t}{n}}[/mm].
Begründe nun, dass [mm]\delta[/mm] immer kleiner ist als [mm]e^{\delta}[/mm].
Der zusätzliche Faktor [mm]e^{t+\bruch{t}{n}}[/mm] ist sowieso größer als 1.
Gruß Abakus

>  Könnte jemand einen Tipp geben?
>  
> Vielen Dank!
>  Fry
>  


Bezug
                
Bezug
Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:28 Fr 23.03.2012
Autor: Fry


Hi abakus!
Vielen Dank :) Alles verstanden.
Allerdings hab ich gerade gesehen, dass ich mich bei der Ungleichung vertan habe:(.
Es musste heißen [mm]e^{\frac{ta}{2n}}\le \frac{e^{t+\delta}}{\delta}[/mm]
wobei [mm]0\le a\le n^2[/mm]
Dann klappt die Argumentation nicht mehr, oder?

LG
Fry


Bezug
                        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:35 Mo 26.03.2012
Autor: fred97


>
> Hi abakus!
>  Vielen Dank :) Alles verstanden.
>  Allerdings hab ich gerade gesehen, dass ich mich bei der
> Ungleichung vertan habe:(.
>  Es musste heißen [mm]e^{\frac{ta}{2n}}\le \frac{e^{t+\delta}}{\delta}[/mm]

Diese Ungl. ist für t= [mm] \delta [/mm] = n=4 und a=16 falsch.

FRED

>  
> wobei [mm]0\le a\le n^2[/mm]
>  Dann klappt die Argumentation nicht
> mehr, oder?
>  
> LG
>  Fry
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]