matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesUngleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - Ungleichung
Ungleichung < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:27 Do 03.11.2011
Autor: Mathe-Lily

Aufgabe
Zeigen Sie für a,b [mm] \in \IR [/mm] die Ungleichung |a| + |b| [mm] \le [/mm] |a+b| + |a-b|.
Wann gilt Gleichheit?

Hallo!
Ich hatte mir gedacht, dass man etwas mit den beiden Dreiecksungleichungen anfangen könnte, also:
|a+b| [mm] \le [/mm] |a| + |b|  und
| |a| - |b| | [mm] \le [/mm] |a-b|

aber:
die beiden Dreiecksungleichungen würden ja gegengesetzt wirken/sein!

Ein anderer Ansatz wäre eine Fallunterscheidung, aber da ist dann die Frage, wie man das macht, also ob
Fall 1: a,b positiv
Fall 2: a,b negativ
Fall 3: a pos, b neg
Fall 4: a neg, b pos
oder wie?

und dann stehe ich aber immer noch vor dem problem wie ich das für die verschiedenen Fälle zeige!

Ich bin gerade etwas hilflos... kann mir vielleicht jemand einen Schubs in die richtige Richtung geben? Das wäre toll!
Danke schon mal :-)

        
Bezug
Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:35 Do 03.11.2011
Autor: Mathe-Lily

achja, hab gerade den 2. Teil der Aufgabe vergessen.
Ich habe mir überlegt dass  das für a=b gilt.
Denn dann wäre |a - b| = 0 und der Rest ist ja praktisch die Dreiecksungleichung, nur verkehrtrum...
also muss Gleichheit gelten.
Aber stimmt das? und wie würde ich das sauber aufschreiben?

Grüßle und DANKE schonmal :-)


Bezug
                
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:46 Do 03.11.2011
Autor: leduart

Hallo
da |a-b|=|b-a| ist, man also die Buchstaben austauschen kann kann man annehmen [mm] a\le [/mm] b
dann musst du nur die fälle [mm] 0\le a\le [/mm] b ;  [mm] a\leb<0 [/mm]  und [mm] a\le0\leb [/mm] betrachten
mit den 3 fallunterscheidungen hast du alles. dabei sieht man auch wann = kommt.
Gruss leduart


Bezug
                        
Bezug
Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:01 Sa 05.11.2011
Autor: Mathe-Lily

Ich danke dir :-)

Bezug
        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:42 Do 03.11.2011
Autor: donquijote


> Zeigen Sie für a,b [mm]\in \IR[/mm] die Ungleichung |a| + |b| [mm]\le[/mm]
> |a+b| + |a-b|.
>  Wann gilt Gleichheit?
>  Hallo!
>  Ich hatte mir gedacht, dass man etwas mit den beiden
> Dreiecksungleichungen anfangen könnte, also:
>  |a+b| [mm]\le[/mm] |a| + |b|  und
>  | |a| - |b| | [mm]\le[/mm] |a-b|
>  
> aber:
>  die beiden Dreiecksungleichungen würden ja gegengesetzt
> wirken/sein!
>
> Ein anderer Ansatz wäre eine Fallunterscheidung, aber da
> ist dann die Frage, wie man das macht, also ob
>  Fall 1: a,b positiv
>  Fall 2: a,b negativ
>  Fall 3: a pos, b neg
>  Fall 4: a neg, b pos
>  oder wie?
>  
> und dann stehe ich aber immer noch vor dem problem wie ich
> das für die verschiedenen Fälle zeige!
>
> Ich bin gerade etwas hilflos... kann mir vielleicht jemand
> einen Schubs in die richtige Richtung geben? Das wäre
> toll!
> Danke schon mal :-)

Mit der Dreiecksungleichung könntest du zeigen [mm] |2a|\le |a+b|+|a-b|\Leftrightarrow |a|\le(|a+b|+|a-b|)/2 [/mm]
und analog [mm] |b|\le(|a+b|+|a-b|)/2. [/mm]
Wenn du dann überlegtst, wann die Dreiecksungleichung Gleichheit liefert, kannst du auch die zweite Frage beantworten.

Bezug
                
Bezug
Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:00 Sa 05.11.2011
Autor: Mathe-Lily

Danke sehr :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]