matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInduktionsbeweiseUngleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Induktionsbeweise" - Ungleichung
Ungleichung < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:07 So 07.02.2010
Autor: Palisaden-Honko

Aufgabe
Beweisen Sie,m dass für alle [mm] n\in\IN [/mm] gilt:
[mm] \summe_{k=1}^{n}\bruch{1}{\sqrt{k}}\ge2\sqrt{n+1}-2 [/mm]

Hallo zusammen!
Irgendwo hab ich hier einen Denkfehler. Ich hab versucht, den Beweis als Ungleichungskette aufzuschreiben, aber was unten rauskomt, widerlegt die Behauptung:

A(n=1):
[mm] \bruch{1}{\sqrt{1}}\ge 2\sqrt{2}-2 [/mm]
[mm] \gdw 1\ge 2\sqrt{2}-2 [/mm]

[mm] A(n)\to [/mm] A(n+1):
Vorr.: [mm] \summe_{k=1}^{n+1}\bruch{1}{\sqrt{k}}\ge 2\sqrt{n+2}-2 [/mm]

[mm] \summe_{k=1}^{n+1}\bruch{1}{\sqrt{k}}=\summe_{k=1}^{n}\bruch{1}{\sqrt{k}}+\bruch{1}{\sqrt{n+1}} [/mm]
[mm] \ge 2\sqrt{n+1}-2+\bruch{1}{\sqrt{n+1}} [/mm]
[mm] =2\sqrt{n+2}-2+\bruch{(2\sqrt{n+1}-2\sqrt{n+2})\sqrt{n+1}+1}{\sqrt{n+1}} [/mm]
[mm] \ge 2\sqrt{n+2}-2 [/mm]

[mm] \bruch{(2\sqrt{n+1}-2\sqrt{n+2})\sqrt{n+1}+1}{\sqrt{n+1}} [/mm] ist doch stets negativ, oder? Damit kann die letzte Zeile nicht stimmen. Was hab ich falsch gemacht?

Gruß,

Honko


edit:
Mir ist grad aufgefallen, dass [mm] 2\sqrt{n+1}-2\sqrt{n+2} [/mm] zwar immer negativ sind, aber immer <1. Damit ist mein Ansatz gerettet. Ist der denn formal richtig?

        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 So 07.02.2010
Autor: abakus


> Beweisen Sie,m dass für alle [mm]n\in\IN[/mm] gilt:
>  [mm]\summe_{k=1}^{n}\bruch{1}{\sqrt{k}}\ge2\sqrt{n+1}-2[/mm]
>  Hallo zusammen!
>  Irgendwo hab ich hier einen Denkfehler. Ich hab versucht,
> den Beweis als Ungleichungskette aufzuschreiben, aber was
> unten rauskomt, widerlegt die Behauptung:
>  
> A(n=1):
>  [mm]\bruch{1}{\sqrt{1}}\ge 2\sqrt{2}-2[/mm]
>  [mm]\gdw 1\ge 2\sqrt{2}-2[/mm]
>  
> [mm]A(n)\to[/mm] A(n+1):
>  Vorr.:

Falsch. Das ist bereits die Induktionsbehauptung.
>[mm]\summe_{k=1}^{n+1}\bruch{1}{\sqrt{k}}\ge 2\sqrt{n+2}-2[/mm]

>  
> [mm]\summe_{k=1}^{n+1}\bruch{1}{\sqrt{k}}=\summe_{k=1}^{n}\bruch{1}{\sqrt{k}}+\bruch{1}{\sqrt{n+1}}[/mm]
>  [mm]\ge 2\sqrt{n+1}-2+\bruch{1}{\sqrt{n+1}}[/mm]
>  

Du hast in zwischen dem Term deiner vorhergehenden und deiner nachfolgenden Zeile ein Gleichheitszeichen. Wieso???
Gilt wirklich [mm] 2\sqrt{n+1}-2+\bruch{1}{\sqrt{n+1}}=2\sqrt{n+2}-2+\bruch{(2\sqrt{n+1}-2\sqrt{n+2})\sqrt{n+1}+1}{\sqrt{n+1}} [/mm] ?

Ich komme da auf
[mm] 2\sqrt{n+1}-2+\bruch{1}{\sqrt{n+1}}=\bruch{2(n+1)-2\sqrt{n+1} + 1}{\sqrt{n+1}} [/mm]
Gruß Abakus

> [mm]=2\sqrt{n+2}-2+\bruch{(2\sqrt{n+1}-2\sqrt{n+2})\sqrt{n+1}+1}{\sqrt{n+1}}[/mm]
>  [mm]\ge 2\sqrt{n+2}-2[/mm]
>  
> [mm]\bruch{(2\sqrt{n+1}-2\sqrt{n+2})\sqrt{n+1}+1}{\sqrt{n+1}}[/mm]
> ist doch stets negativ, oder? Damit kann die letzte Zeile
> nicht stimmen. Was hab ich falsch gemacht?
>  
> Gruß,
>  
> Honko
>  
> edit:
>  Mir ist grad aufgefallen, dass [mm]2\sqrt{n+1}-2\sqrt{n+2}[/mm]
> zwar immer negativ sind, aber immer <1. Damit ist mein
> Ansatz gerettet. Ist der denn formal richtig?


Bezug
                
Bezug
Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:06 So 07.02.2010
Autor: Palisaden-Honko


> Du hast in zwischen dem Term deiner vorhergehenden und
> deiner nachfolgenden Zeile ein Gleichheitszeichen.
> Wieso???
>  Gilt wirklich
> [mm]2\sqrt{n+1}-2+\bruch{1}{\sqrt{n+1}}=2\sqrt{n+2}-2+\bruch{(2\sqrt{n+1}-2\sqrt{n+2})\sqrt{n+1}+1}{\sqrt{n+1}}[/mm]
> ?

>

Ja, weil [mm] 2\sqrt{n+1}-2+\bruch{1}{\sqrt{n+1}}+2\sqrt{n+2}-2\sqrt{n+2} [/mm]
[mm] =2\sqrt{n+2}-2+\bruch{1}{\sqrt{n+1}}+2\sqrt{n+1}-2\sqrt{n+2} [/mm]
[mm] =2\sqrt{n+2}-2+\bruch{2\sqrt{n+1}(\sqrt{n+1}-\sqrt{n+2})+1}{\sqrt{n+1}} [/mm]

  

> Ich komme da auf
> [mm]2\sqrt{n+1}-2+\bruch{1}{\sqrt{n+1}}=\bruch{2(n+1)-2\sqrt{n+1} + 1}{\sqrt{n+1}}[/mm]
>  

??? Ist doch dasselbe, oder nicht?

Bezug
                        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:33 So 07.02.2010
Autor: leduart

Hallo
ja das ist richtig, aber warum machst du das? du willst doch wahrscheinlich zeigen, dass:
[mm] 2\sqrt{n+1}-2+\bruch{1}{\sqrt{n+1}}\le 2\sqrt{n+2}-2 [/mm] ist
die Gleichung würd ich mit [mm] \sqrt{n+1}>0 [/mm] multipl. und dann bestätigen, darauf achten, nur Äquivalenzumf. zu machen, dann kannst dus hinterher, wenn du willst von hinrten aufrollen
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]