matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesUngleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis-Sonstiges" - Ungleichung
Ungleichung < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:13 Fr 15.05.2009
Autor: DrNetwork

Aufgabe
Lösen von |x-2|+|3x-6|<|x|

|x-2|+|3x-6|<|x|

also mein ansatz war folgender:

x-2=0 [mm] \Rightarrow [/mm] x=2
3x-6=0 [mm] \Rightarrow [/mm] x=2

x<2:

-x+2-3x+6 < |x|
-4x+8 < |x|

x < 0:
-4x+9<-x
9<3x
3<x

x>0:
-4x+9<x
9/5 < x

x>2:
x-2+3x-6<x
4x-8<x
-8<-3x
8/3 > x

das ist meine erste ungleichung im leben :) Wie siehts aus? In Ordnung?, Schreibweise? etc.


        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 06:00 Fr 15.05.2009
Autor: angela.h.b.


> Lösen von |x-2|+|3x-6|<|x|
>  |x-2|+|3x-6|<|x|
>  
> also mein ansatz war folgender:
>  
> x-2=0 [mm]\Rightarrow[/mm] x=2
>  3x-6=0 [mm]\Rightarrow[/mm] x=2
>  
> x<2:
>  
> -x+2-3x+6 < |x|
>  -4x+8 < |x|
>  
> x < 0:
>  [mm] -4x+\red{9}<-x [/mm]
>  9<3x
>  3<x
>  
> x>0:
>  [mm] -4x+\red{9}
>  9/5 < x
>  
> x>2:
>  x-2+3x-6<x
>  4x-8<x
>  -8<-3x
>  8/3 > x

>  
> das ist meine erste ungleichung im leben :) Wie siehts aus?
> In Ordnung?, Schreibweise? etc.
>  

Hallo,

im Prinzip ist das in Ordnung. An den markierten Stellen ist bloß aus unerfindlichen Gründen aus der 4 eine 9 geworden.

Es ist übrigens  |x-2|+|3x-6|<|x|  <==>  4|x-2| <|x|

Gruß v. Angela

Bezug
                
Bezug
Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:44 Fr 15.05.2009
Autor: DrNetwork

ah, okey, ja mit der 9 hab ich mich wohl vertan sollte eine 8 sein.

Noch eine Frage und zwar wie interpretiere ich das Ergbnis z.B. Zahlenstrahl oder so? was heissen die ergebnisse und wie schreibt man die Lösungsmenge auf?

Bezug
                        
Bezug
Ungleichung: Lösungsmenge
Status: (Antwort) fertig Status 
Datum: 14:17 Fr 15.05.2009
Autor: weightgainer

Hallo DrNetwork,

wenn du sauber die drei Fälle unterscheidest, für die deine drei (bzw. beiden nach Angelas Vereinfachung) Beträge jeweils unterschiedliche Vorzeichen liefern, dann musst du diese Einschränkung jeweils noch mit deinem berechneten Ergebnis kombinieren.

1. Fall: x>2, Rechnung liefert x < [mm] \bruch{8}{3}, [/mm] d.h. hier sind nur die Zahlen Lösungen, die zwischen 2 und [mm] \bruch{8}{3} [/mm] liegen.

2. Fall: 0<x<2, Rechnung liefert: x > [mm] \bruch{8}{5}, [/mm] d.h. ..... das kannst du jetzt selbst

3. Fall: x<0, Rechnung liefert: x < [mm] \bruch{8}{3}, [/mm] d.h. .... entsprechend.

Zum einen kannst du auf einer Zahlengeraden jetzt die Bereiche markieren, zum anderen kannst du auch formal als Lösungsmenge schreiben: [mm] \IL [/mm] = {x [mm] \in \IR [/mm] | 2 [mm] \le [/mm] x [mm] \le \bruch{8}{3} \cup [/mm] ... Lösungsbereich aus 2. Fall  [mm] \cup [/mm] ... Lösungsbereich aus 3. Fall}

Gruß,
weightgainer

Bezug
                                
Bezug
Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:35 Fr 15.05.2009
Autor: DrNetwork

[mm] \IL [/mm] = {x [mm] \in \IR [/mm] | 2 < x < [mm] \bruch{8}{3} \cup [/mm] 1.6 < x <2 }

der dritte fall ist ein widerspruch oder?

Bezug
                                        
Bezug
Ungleichung: Bestätigung
Status: (Antwort) fertig Status 
Datum: 14:37 Fr 15.05.2009
Autor: weightgainer

Ja, genau. Und den 1. und 2. Teil kann man sogar zu einem Intervall zusammenbauen [mm] (\bruch{8}{5} \le [/mm] x [mm] \le \bruch{8}{3}). [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]