matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisUngleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Schul-Analysis" - Ungleichung
Ungleichung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung: wie ist das zu verstehen
Status: (Frage) beantwortet Status 
Datum: 13:21 Sa 23.10.2004
Autor: DSJuster

a [mm] \in \IZ [/mm]  
es gibt ein b [mm] \in \IZ [/mm] mit a²+(b+1)² [mm] \le [/mm] 5

das (b+1)² ist ja immer positiv ... kann aber mit b=-1 auch 0 sein.
Doch wenn ich b=0 nehme ... is der Ausdruck (b+1)² ... =1 und wäre für a=0;1;2;-1;-2 trotzdem gültig. Mich macht der Ausdruck es gibt ein b stutzig. Wäre schön wenn mir jemand erklären könnte was hiermit gemeint ist.

        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:30 Sa 23.10.2004
Autor: Marc

Hallo DSJuster,

> a [mm]\in \IZ[/mm]  
> es gibt ein b [mm]\in \IZ[/mm] mit a²+(b+1)² [mm]\le[/mm] 5
>  
> das (b+1)² ist ja immer positiv ... kann aber mit b=-1 auch
> 0 sein.
> Doch wenn ich b=0 nehme ... is der Ausdruck (b+1)² ... =1
> und wäre für a=0;1;2;-1;-2 trotzdem gültig. Mich macht der
> Ausdruck es gibt ein b stutzig. Wäre schön wenn mir jemand
> erklären könnte was hiermit gemeint ist.

Ich verstehe es so:
Ein beliebiges [mm] $a\in\IZ$ [/mm] vorgegeben.
Es ist nun zu zeigen, dass für jede solche Wahl von $a$ es ein $b$ gibt, so dass die Ungleichung erfüllt wird.

Bei dieser Interpretation ist die Behauptung aber falsch, wie man durch das Gegenbeispiel $a=4$ sofort einsieht.

Also, entweder du hast die Problematik aus dem Kontext gerissen (und über das $a$ ist noch mehr bekannt als [mm] $a\in\IZ$) [/mm] oder die Ungleichung ist falsch aufgeschrieben (mit einem [mm] $\ge$ [/mm] würde es Sinn machen) oder aber es ist gerade zu zeigen (durch das Gegenbeispiel), dass die Ungleichung falsch ist.

Viele Grüße,
Marc

Bezug
                
Bezug
Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:37 Sa 23.10.2004
Autor: DSJuster

Es geht praktisch darum drei Mengen A1 A2 und A3 zu bestimmen ... die Aufgabe, die ich hier gepostet habe ist zu A2, ich schreib sie nochmal genau so hin wie sie auf meinem Zettel steht.

A2:= {a [mm] \in \IZ [/mm]  /  es gibt ein b [mm] \in \IZ [/mm] mit a²+(b+1)² [mm] \le [/mm] 5 }

mehr hab ich hier nicht stehen und ich hab echt keinen Plan wie ich hier auf irgendeine Lösung kommen soll

Bezug
                        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:26 Sa 23.10.2004
Autor: Marc

Hallo DSJuster,

> Es geht praktisch darum drei Mengen A1 A2 und A3 zu
> bestimmen ... die Aufgabe, die ich hier gepostet habe ist
> zu A2, ich schreib sie nochmal genau so hin wie sie auf
> meinem Zettel steht.
>  
> [mm] $A_2:= \{a \in \IZ| \mbox{ es gibt ein b } \in \IZ \mbox{ mit } a²+(b+1)²\le 5 \}$ [/mm]

Ah so, es geht also darum, gerade diejenigen Werte für a zu finden, für die die Bedingung "es gibt ein b mit..." erfüllbar ist.
  

> mehr hab ich hier nicht stehen und ich hab echt keinen Plan
> wie ich hier auf irgendeine Lösung kommen soll

Das einfachste bzw. der erste Schritt ist, es mal systematisch zu probieren.

Zum Beispiel könntest du dich fragen, ob $a=0$ in [mm] A_2 [/mm] enthalten ist: Für a=0 lautet die Ungleichung [mm] $(b+1)^2\le [/mm] 5$. Nun frag' ich dich: Gibt es ein b, so dass die Ungleichung wahr ist? Du müßtest dann antworten: Ja, für z.B. b=0 ist die Ungleichung erfüllt.
Damit haben wir schon mal gefunden: [mm] $0\in\A_2$ [/mm]

Nun führst du dieselben Überlegungen für

[mm] $\vdots$ [/mm]
[mm] $-2\stackrel{?}{\in}A_2$ [/mm]
[mm] $-1\stackrel{?}{\in}A_2$ [/mm]
[mm] $1\stackrel{?}{\in}A_2$ [/mm]
[mm] $2\stackrel{?}{\in}A_2$ [/mm]
[mm] $\vdots$ [/mm]

durch. Dadurch bekommst du ein gute Ahnung davon, welche Element in [mm] A_2 [/mm] liegen und welche nicht.
Vielleicht gelingt dir ja dann auch ein schlüssiger Beweis?

Bis gleich,
Marc

Bezug
                                
Bezug
Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:45 Sa 23.10.2004
Autor: DSJuster

Für -2 [mm] \le [/mm] a [mm] \le [/mm] 2 gibt es b [mm] \in \IZ [/mm] die diese Ungleichung erfüllen.

Die Lösungsmenge ist also L:={-2;-1;0;1;2} ???

Bezug
                                        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:43 Sa 23.10.2004
Autor: Marc

Hallo DSJuster,

> Für -2 [mm]\le[/mm] a [mm]\le[/mm] 2 gibt es b [mm]\in \IZ[/mm] die diese Ungleichung
> erfüllen.
>  
> Die Lösungsmenge ist also L:={-2;-1;0;1;2} ???

das sehe ich genauso, nur würde ich es nicht Lösungsmenge nennen, sondern dies ist die Menge [mm] $A_2$. [/mm]

Kannst du denn jetzt nachweisen, dass alle a>2 nicht in [mm] A_2 [/mm] liegen?

Viele Grüße,
Marc

Bezug
                                                
Bezug
Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:59 Sa 23.10.2004
Autor: DSJuster

Das kann ich auf jeden Fall nachweisen. Danke für deine Hilfe. Ein schönes We noch...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]