matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Ungleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis des R1" - Ungleichung
Ungleichung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung: 3. -ten Grades
Status: (Frage) beantwortet Status 
Datum: 15:22 Mi 08.11.2006
Autor: hooover

Aufgabe
Welche reellen Zahlen lösen die Ungleichung?

[mm] x^3-x^2<2x-2 [/mm]

Hallo Leute,

ich hab das erstmal nach Null umgestellt.

also so:

[mm] x^3-x^2-2x+2<0 [/mm]

und das ist auch mein Problem

ich finde irgendwie keinen Ansatz um eine Gleichung dritten Grades zu lösen.

Ich dachte an das Pascalsche Zahelndreieck, aber habe auch nicht wirklich ne Idee wie ich das miteinander verbinde.

Vll. hat jemand einen Tipp oder eine Lösungsstrategie wie man allg. an das Lösen von Gleichungen höherer Potnez als 2 ranngeht.


Vielen DAnk schon mal

Gruß hooover!

        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:33 Mi 08.11.2006
Autor: VNV_Tommy

Hallo hooover!

> Welche reellen Zahlen lösen die Ungleichung?
>  
> [mm]x^3-x^2<2x-2[/mm]
>  Hallo Leute,
>  
> ich hab das erstmal nach Null umgestellt.

Könnte man machen, allerdings wird die ganze Sache hier dann ein bisschen unangenehm.

Hier ein, denke ich mal, besserer Vorschlag:

Klammere auf der linken Seite mal [mm] x^{2} [/mm] und auf der rechten seite mal 2 aus und schau dir die Ungleichung dann mal an:

[mm] x^{2}(x-1)<2(x-1) [/mm]

Was würde jetzt passieren, wenn man beide Seiten durch (x-1) dividiert? ;-)

Denke, das sollte als Hinweis genügen.
  

> also so:
>  
> [mm]x^3-x^2-2x[b]+2[/b]<0[/mm]
>  
> und das ist auch mein Problem
>  
> ich finde irgendwie keinen Ansatz um eine Gleichung dritten
> Grades zu lösen.

Gleichungen dritten Grades mit absolutem Glied löst man im allgemeinen mittels Polynomdivision. Ist hier jedoch nicht nötig (vgl. oben).

Gruß,
Tommy

Bezug
        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:55 Mi 08.11.2006
Autor: Teufel

Hallo!

Wenn du das wie beschrieben durchziehst, bekommst du aber leider nicht alle Lösungen.
Du solltest alles auf eine Seite holen und gucken, wann erst einmal 0 rauskommt. Also musst du alle Nullstellen der Funktion bestimmen, wenn man den Term nun als Funktion ansieht. Also Nullstelle raten, Polynomdivision, andere Nullstellen rauskriegen. Wenn du jetzt alle hast, kannst du x³-x²-2x+2 als Linearfaktoren schreiben. Also [mm] (x-x_{N1})(x-x_{N2})... [/mm]

Dann kannst du die Funktion in der Linearfaktorzerlegung <0 setzen.
Und dann musst du überlegen, wann dieses Produkt kleiner als 0 wird :)

Denn die Lösung " [mm] -\wurzel{2} [/mm] < x < [mm] \wurzel{2} [/mm] " wäre falsch.



Bezug
                
Bezug
Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:06 Mi 08.11.2006
Autor: Stefan-auchLotti

[mm] \text{Oder Cardanische Formel benutzen. ;)} [/mm]

[mm] \text{Stefan.} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]