matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieUneigentliches Riemann-Int
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integrationstheorie" - Uneigentliches Riemann-Int
Uneigentliches Riemann-Int < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Uneigentliches Riemann-Int: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:17 Di 16.07.2013
Autor: Henrikc007

Hallo :)

Ich bereite mich gerade auf meine Ana 4 für Physiker Prüfung vor und komme mit einer Aufgabe nicht klar: Ich soll zeigen, dass dieses Integral als Lebesgue-Integral ex.

[mm] \integral_{\mathbb{R}}{\bruch{e^{|x|+|y|}}{\wurzel{1+x^2+y^2}} dx dy} [/mm]

Also muss ich schauen, ob das uneigentliche Riemann-Integral konvergiert? Mathematica sagt, dass es nicht konvergiert, nur wie kann ich das zeigen?! Ich komme einfach nicht auf eine gute Abschätzung...

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Uneigentliches Riemann-Int: Antwort
Status: (Antwort) fertig Status 
Datum: 11:39 Di 16.07.2013
Autor: fred97


> Hallo :)
>  
> Ich bereite mich gerade auf meine Ana 4 für Physiker
> Prüfung vor und komme mit einer Aufgabe nicht klar: Ich
> soll zeigen, dass dieses Integral als Lebesgue-Integral
> ex.
>  
> [mm]\integral_{\mathbb{R}}{\bruch{e^{|x|+|y|}}{\wurzel{1+x^2+y^2}} dx dy}[/mm]

Du meinst wohl [mm]\integral_{\IR^2}{\bruch{e^{|x|+|y|}}{\wurzel{1+x^2+y^2}} dx dy}[/mm]

>  
> Also muss ich schauen, ob das uneigentliche
> Riemann-Integral konvergiert? Mathematica sagt, dass es
> nicht konvergiert, nur wie kann ich das zeigen?! Ich komme
> einfach nicht auf eine gute Abschätzung...
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Sei R>0 und [mm] K_R:=\{(x,y) \in \IR^2: x^2+y^2 \le R^2\} [/mm]

Dann ist [mm]\integral_{\IR^2}{\bruch{e^{|x|+|y|}}{\wurzel{1+x^2+y^2}} dx dy} \ge \integral_{K_R}{\bruch{e^{|x|+|y|}}{\wurzel{1+x^2+y^2}} dx dy}[/mm]

Wegen |x|+|y| [mm] \ge \wurzel{x^2+y^2} [/mm]

ist dann

[mm]\integral_{\IR^2}{\bruch{e^{|x|+|y|}}{\wurzel{1+x^2+y^2}} dx dy} \ge \integral_{K_R}{\bruch{e^{|x|+|y|}}{\wurzel{1+x^2+y^2}} dx dy} \ge \integral_{K_R}{\bruch{e^{\wurzel{x^2+y^2}}}{\wurzel{1+x^2+y^2}} dx dy} [/mm]

Mit Polarkoordinaten zeige:

    [mm] \integral_{K_R}{\bruch{e^{\wurzel{x^2+y^2}}}{\wurzel{1+x^2+y^2}} dx dy} \to \infty [/mm] für R [mm] \to \infty [/mm]

FRED

Bezug
                
Bezug
Uneigentliches Riemann-Int: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:05 Di 16.07.2013
Autor: Henrikc007

Vielen Dank schonmal! Ich hab wohl in diesem Bereich etwas nachholbedarf.

Wenn ich in die Abschätzung Polarkoordinaten einsetze komme ich auf folgenden Ausdruck:

2 [mm] \pi \integral_{0}^{\infty}\bruch {e^R \cdot R}{\sqrt{1+R^2}} [/mm] dR

Wie mache ich jetzt weiter...?

Bezug
                        
Bezug
Uneigentliches Riemann-Int: Antwort
Status: (Antwort) fertig Status 
Datum: 12:37 Di 16.07.2013
Autor: leduart

Hallo
schätze den Integranden etwa für R>1  nach unten ab, also zeige, dass füür einen kleineren Integranden das Integral schon divergiert.
bis dann, lula

Bezug
                                
Bezug
Uneigentliches Riemann-Int: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:05 Di 16.07.2013
Autor: Henrikc007

Ah, vielen Dank! Der Groschen ist endlich gefallen^^

Also so:

2 [mm] \pi \integral_{0}^{\infty}{e^R \sqrt{\frac{R^2}{1+R^2}} dR}>2 \pi \integral_{1}^{\infty}{e^R \sqrt{\frac{R^2}{1+R^2}} dR}>\frac{2 \pi}{\sqrt{2}} \integral_{1}^{\infty}{e^R dR}=\infty [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]