matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisUneigentliches Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Uneigentliches Integral
Uneigentliches Integral < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Uneigentliches Integral: Frage
Status: (Frage) beantwortet Status 
Datum: 19:36 Do 01.09.2005
Autor: foxxylein

Das folgende Integral soll auf Existenz untersucht werden (Singularität in 0)
[mm] \integral_{0}^{1} {\bruch{sin(x)}{x*\wurzel{x}} dx}[/mm]

Wie geht man da ran? Danke!

        
Bezug
Uneigentliches Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Do 01.09.2005
Autor: Toellner


> Das folgende Integral soll auf Existenz untersucht werden
> (Singularität in 0)
>  [mm]\integral_{0}^{1} {\bruch{sin(x)}{x*\wurzel{x}} dx}[/mm]
>  
> Wie geht man da ran?

Du setzt die untere Intervallgrenze gleich z, integrierst, und prüfst dann, ob der Limes z->0 existiert.

Grüße, Richard


Bezug
                
Bezug
Uneigentliches Integral: Stammfunktion nicht explizit
Status: (Frage) beantwortet Status 
Datum: 19:58 Do 01.09.2005
Autor: foxxylein

Das habe ioch auch versucht, doch leider ist die Stammfunktion nicht explizit angebbar. Oder irre ich mich?

Bezug
                        
Bezug
Uneigentliches Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 Do 01.09.2005
Autor: Toellner

Ersetzte den sin durch seine Taylorreihe, dividiere die durch [mm] x^{1,5}, [/mm] das gibt eine Entwicklung des Integranden und zeige, dass der auf dem Intervall [z; 1] konvergiert: dann kannst Du Summen- und Integralzeichen vertauschen. Anschließend z -> 0 und das unbestimmte Integral existiert.

Grüße, Richard

Bezug
                        
Bezug
Uneigentliches Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Do 01.09.2005
Autor: SEcki


> Das habe ioch auch versucht, doch leider ist die
> Stammfunktion nicht explizit angebbar. Oder irre ich mich?

Ein anderes Vorgehen wie in der anderen Lösung (bei der man sich nicht immer über Vertauschungen von unedlichen Summen/Funktionen/Integralen im klaren sein muss): Schätze den Integranten nach oben durch [m]\bruch{1}{\sqrt{x}}[/m] ab. Dann konvergeirt das Integral wegen dem Majorantenkriterium.

SEcki

Bezug
                                
Bezug
Uneigentliches Integral: Besser!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:32 Do 01.09.2005
Autor: Toellner

So geht's schneller!

Bezug
                                        
Bezug
Uneigentliches Integral: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:00 Fr 02.09.2005
Autor: foxxylein

Danke für die Antworten und die elegante und kurze Lösung mit Hilfe der Majorantenkriteriums.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]