matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisUneigentliche Integrierbarkeit zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Uneigentliche Integrierbarkeit zeigen
Uneigentliche Integrierbarkeit zeigen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Uneigentliche Integrierbarkeit zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:04 Di 29.06.2004
Autor: Laura20

Hallo liebes Matheraum-team!
Ich habe hier eine Aufgabe, mit der ich überhaupt nichts anfangen kann, ich hoffe ihr könnt mir da helfen:

f,g: [mm] [0,\infty[\to\IC [/mm] seien differenzierbar mit f(x), g(x) [mm] \to [/mm] 0 bei x [mm] \to\infty. [/mm] Zeigen Sie: Ist f * g` auf [mm] [0,\infty[ [/mm] uneigentlich integrierbar, so ist auch f`* g auf [mm] [0,\infty[ [/mm] uneigentlich integrierbar.

Ich habe bei der Aufgabe nicht mal einen Lösungsansatz, was mir ziemlich zu knabbern gibt. Ich hoffe mal ihr wisst da besser Bescheid als ich (wie so oft ;),
mfg Laura


        
Bezug
Uneigentliche Integrierbarkeit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:22 Di 29.06.2004
Autor: andreas

hi

was mir so ad-hoc einfällt ist partielle integration:

da [m] f, g [/m] (zumindest rechtsseitig  differnzierbar und damit (rechtsseitig) stetig auf [m] [0, \infty [ [/m] ist [m] f(0), g(0) [/m] und damit auch das produkt [m] f(0) \cdot g(0) [/m] endlich. dann gilt:

[m] \displaystyle{ \int_0^\infty f' \cdot g \; \text{d}x = f(x) \cdot g(x) |_{x=0}^\infty - \int _0^\infty f \cdot g' \; \text{d}x [/m]

existiert nun [m] \int _0^\infty f \cdot g' \; \text{d}x} [/m], dann sind auf der rechten seite der gleichung beide summanden definiert und endlich, also existiert auch die linke seite und andersrum.

es kann aber natürlich auch sein, dass ich total auf dem holzweg bin...

andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]