matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationUnbestimmtes Integral
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Unbestimmtes Integral
Unbestimmtes Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unbestimmtes Integral: Irrationale Funktionen
Status: (Frage) beantwortet Status 
Datum: 18:18 So 08.11.2009
Autor: ImminentMatt

Aufgabe
a) [mm] \integral_{}^{}{cos^{2}(x) dx} [/mm]
b) [mm] \integral_{}^{}{cosh^{2}(x) dx} [/mm]
c) [mm] \integral_{}^{}{\wurzel{a^{2}-x^{2}} dx} [/mm]
d) [mm] \integral_{}^{}{\wurzel{a^{2}+x^{2}} dx} [/mm]

Drücken sie die Ergebnisse in (a) und (b) durch sin x und cos x bzw. sinh x und cosh x aus.

Mein Ergebnis für Aufgabe a) irritiert mich.

Mein Vorgehen:

[mm] \integral_{}^{}{cos^{2}(x) dx} [/mm]

f(x)=cos (x) f'(x)=-sin(x)
g'(x)= cos(x) g(x)=sin(x)

(Für die Partielle Integration von cos (x) * cos (x) gilt laut Wiki:
[mm] \integral_{}^{}{f(x)*g'(x) dx} [/mm] = f(x)g(x) - [mm] \integral_{}^{}{f'(x)g(x) dx} [/mm] )

Also setze ich ein:

[mm] \integral_{}^{}{cos^{2}(x) dx} [/mm] = cos(x)*cos(x) - [mm] \integral_{}^{}{- sin(x)*cos(x) dx} [/mm]

Das fand ich ganz angenehm, da ich das - im Integral rausziehen kann und
[mm] \integral_{}^{}{ sin(x)*cos(x) dx} [/mm] kenne ich, das es [mm] \bruch{sin^{2}(x)}{2} [/mm] ist

Also habe ich das eingesetzt und komme auf

[mm] \integral_{}^{}{cos^{2}(x) dx}= cos^{2}x [/mm] + [mm] \bruch{sin^{2}(x)}{2} [/mm]
= [mm] \bruch{2cos^{2}(x)+sin^{2}(x)}{2} [/mm] =  [mm] \bruch{cos^{2}(x) + cos^{2}(x) + sin^{2}(x)}{2} [/mm] = 0,5 * [mm] (cos^{2}(x)+1) [/mm]

Ich werde das Gefühl nicht los, dass ich mich irgendwo auf dem Weg verhauen habe und deswegen habe ich die Frage hier und nirgends sonst gestellt.

Vielen Dank

        
Bezug
Unbestimmtes Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:46 So 08.11.2009
Autor: ImminentMatt

Nach etwas rumfummeln kam ich auf:
[mm] \integral_{}^{}{cos^{2}x dx} [/mm] = [mm] \integral_{}^{}{1- sin^{2}x dx} [/mm]

= x - [mm] \integral_{}^{}{sin^{2}x dx} [/mm]

u'=sin(x) u= -cos(x)
v= sin(x) v'=cos(x)

= x + cos(x)sin(x) - [mm] \integral_{}^{}{cos(x)(-1)(cos(x)) dx} [/mm]

Wie werde ich diese dumme (-1) los? Bzw. wie komme ich hier im allgemeinen weiter.

Bezug
        
Bezug
Unbestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:59 So 08.11.2009
Autor: MathePower

Hallo ImminentMatt,

> a) [mm]\integral_{}^{}{cos^{2}(x) dx}[/mm]
>  b)
> [mm]\integral_{}^{}{cosh^{2}(x) dx}[/mm]
>  c)
> [mm]\integral_{}^{}{\wurzel{a^{2}-x^{2}} dx}[/mm]
>  d)
> [mm]\integral_{}^{}{\wurzel{a^{2}+x^{2}} dx}[/mm]
>  
> Drücken sie die Ergebnisse in (a) und (b) durch sin x und
> cos x bzw. sinh x und cosh x aus.
>  Mein Ergebnis für Aufgabe a) irritiert mich.
>  
> Mein Vorgehen:
>  
> [mm]\integral_{}^{}{cos^{2}(x) dx}[/mm]
>  
> f(x)=cos (x) f'(x)=-sin(x)
>  g'(x)= cos(x) g(x)=sin(x)
>  
> (Für die Partielle Integration von cos (x) * cos (x) gilt
> laut Wiki:
>  [mm]\integral_{}^{}{f(x)*g'(x) dx}[/mm] = f(x)g(x) -
> [mm]\integral_{}^{}{f'(x)g(x) dx}[/mm] )
>  
> Also setze ich ein:
>  
> [mm]\integral_{}^{}{cos^{2}(x) dx}[/mm] = cos(x)*cos(x) -
> [mm]\integral_{}^{}{- sin(x)*cos(x) dx}[/mm]


Bei der partiellen Integration hast Du [mm]g'=\cos\left(x\right)[/mm] gesetzt.

Deshalb ist [mm]g\left(x\right)=\sin\left(x\right)[/mm].

Demnach muss hier stehen:

[mm]\integral_{}^{}{cos^{2}(x) dx} = cos(x)*\red{\sin\left(x\right)}- \integral_{}^{}{- sin(x)*\red{\sin\left(x\right)} \ dx}[/mm]


>  
> Das fand ich ganz angenehm, da ich das - im Integral
> rausziehen kann und
> [mm]\integral_{}^{}{ sin(x)*cos(x) dx}[/mm] kenne ich, das es
> [mm]\bruch{sin^{2}(x)}{2}[/mm] ist
>  
> Also habe ich das eingesetzt und komme auf
>  
> [mm]\integral_{}^{}{cos^{2}(x) dx}= cos^{2}x[/mm] +
> [mm]\bruch{sin^{2}(x)}{2}[/mm]
>  = [mm]\bruch{2cos^{2}(x)+sin^{2}(x)}{2}[/mm] =  [mm]\bruch{cos^{2}(x) + cos^{2}(x) + sin^{2}(x)}{2}[/mm]
> = 0,5 * [mm](cos^{2}(x)+1)[/mm]
>  
> Ich werde das Gefühl nicht los, dass ich mich irgendwo auf
> dem Weg verhauen habe und deswegen habe ich die Frage hier
> und nirgends sonst gestellt.
>  
> Vielen Dank


Gruss
MathePower

Bezug
                
Bezug
Unbestimmtes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:41 So 08.11.2009
Autor: ImminentMatt

Aufgabe
[mm] \integral_{}^{}{\wurzel{a^{2}-x^{2}} dx} [/mm]

Muss man sich bei so einer Aufgabe das Leben schwer machen oder kann man auch Integrieren durch 'sehen' ? Quasi rückwärts konstruieren, weil mir hier spontan kein schönerer Weg einfällt würde ich daraus

[mm] \bruch{1}{-2x} [/mm] * [mm] \bruch{2}{3} (a^{2}-x^{2})^{ \bruch{3}{2} } [/mm] machen.

Wäre so eine rückwärtskonstruktion legitim oder ist das Ergebnis gar falsch?


Wie würde man das Integral ansonsten aus dem Hut zaubern?

Bezug
                        
Bezug
Unbestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:44 So 08.11.2009
Autor: MathePower

Hallo ImminentMatt,

> [mm]\integral_{}^{}{\wurzel{a^{2}-x^{2}} dx}[/mm]
>  Muss man sich bei
> so einer Aufgabe das Leben schwer machen oder kann man auch
> Integrieren durch 'sehen' ? Quasi rückwärts konstruieren,
> weil mir hier spontan kein schönerer Weg einfällt würde
> ich daraus
>
> [mm]\bruch{1}{-2x}[/mm] * [mm]\bruch{2}{3} (a^{2}-x^{2})^{ \bruch{3}{2} }[/mm]
> machen.
>  
> Wäre so eine rückwärtskonstruktion legitim oder ist das
> Ergebnis gar falsch?
>  


Das Ergebnis ist falsch.


>
> Wie würde man das Integral ansonsten aus dem Hut zaubern?


Mit einer Substitution.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]