matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisUnbestimmtes Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Unbestimmtes Integral
Unbestimmtes Integral < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unbestimmtes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:29 Fr 11.09.2009
Autor: Hokes

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Es geht um eine typische Anwendung des Residuensatzes auf das folgende unbestimmte Integral:

Gegeben ist das uneigentliche Integral [mm] \integral_{-\infty}^{\infty}{\bruch{P(x)}{Q(x)} dx} [/mm] mit den Polynomen P und Q, wobei grad Q [mm] \ge [/mm] grad P+2. Weiterhin habe Q keine reelle Nullstellen.
WIESO EXISTIERT DIESES INTEGRAL?
Dass man mit dem Majorantenkriterium (für uneigentliche Integrale) rauskriegt, dass [mm] |\bruch{P(x)}{Q(x)}| \le \bruch{M}{|x|^{2}} [/mm] für große x  (M>0), das leuchtet mir schon ein. ABER diese Majorante ist doch eigentlich (also FÜR ALLE x zwischen [mm] -\infty [/mm] und [mm] \infty) [/mm] nicht erlaubt (oder?), weil [mm] \integral_{-\infty}^{\infty}{\bruch{M}{x^\alpha} dx} [/mm] für kein [mm] \alpha \ge [/mm] 1 existiert.

        
Bezug
Unbestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 01:40 Fr 11.09.2009
Autor: felixf

Hallo!

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Es geht um eine typische Anwendung des Residuensatzes auf
> das folgende unbestimmte Integral:
>  
> Gegeben ist das uneigentliche Integral
> [mm]\integral_{-\infty}^{\infty}{\bruch{P(x)}{Q(x)} dx}[/mm] mit den
> Polynomen P und Q, wobei grad Q [mm]\ge[/mm] grad P+2. Weiterhin
> habe Q keine reelle Nullstellen.
> WIESO EXISTIERT DIESES INTEGRAL?
>
>  Dass man mit dem Majorantenkriterium (für uneigentliche
> Integrale) rauskriegt, dass [mm]|\bruch{P(x)}{Q(x)}| \le \bruch{M}{|x|^{2}}[/mm]
> für große x  (M>0), das leuchtet mir schon ein.

Gut.

> ABER
> diese Majorante ist doch eigentlich (also FÜR ALLE x
> zwischen [mm]-\infty[/mm] und [mm]\infty)[/mm] nicht erlaubt (oder?), weil
> [mm]\integral_{-\infty}^{\infty}{\bruch{M}{x^\alpha} dx}[/mm] für
> kein [mm]\alpha \ge[/mm] 1 existiert.

Ja, das stimmt. Aber es ist ja auch keine Majorante fuer alle $x [mm] \in \IR$. [/mm] Definiere $f(x) := [mm] \begin{cases} \frac{M}{x^2} & \text{falls } |x| > C \\ M' & \text{sonst} \end{cases}$ [/mm] fuer $C > 0$, $M' > 0$ passend. (Auf $[-C, C]$ ist [mm] $\frac{P(x)}{Q(x)}$ [/mm] als stetige Funktion beschraenkt, etwa durch $M'$, und $C$ waehlt man so dass [mm] $|\frac{P(x)}{Q(x)}| \le \frac{M}{|x|^2}$ [/mm] gilt fuer $|x| > C$.)

Dann ist $f$ eine Majorante, und es gilt [mm] $\int_{-\infty}^\infty [/mm] f(x) dx = [mm] \int_{-\infty}^C \frac{M}{(-x)^2} [/mm] dx + [mm] \int_{-C}^C [/mm] M' dx + [mm] \int_C^\infty \frac{M}{x^2} [/mm] dx$, was wegen $C > 0$ endlich ist.

LG Felix


Bezug
                
Bezug
Unbestimmtes Integral: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:21 Fr 11.09.2009
Autor: Hokes

Hi.
Danke für die schnelle Lösung!
MfG
Hokes

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]