matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationUnbest. Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Unbest. Integral
Unbest. Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unbest. Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:48 Do 19.10.2006
Autor: papillon

Aufgabe
Bestimmen Sie folgendes Integral:

[mm] \integral_{}^{}{\bruch{1}{x + x^{4}} dx} [/mm]

Hallo!

Eine schlaue Formelsammlung verrät mir:

[mm] \integral_{}^{}{\bruch{1}{x (1+ x^{3})} dx} [/mm] = [mm] \bruch{1}{3} [/mm] ln [mm] \bruch{x^{3}}{1 + x^{3}} [/mm]

Differenzieren ergibt, das dies auch stimmt.

Aber wie kann ich das Integral selbst lösen? Partielle Integration und Substitution kommen wohl nicht in Frage, Partialbruchzerlegung will mir auch nicht gelingen.

Kann mir einer weiterhelfen? Danke euch!  

        
Bezug
Unbest. Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:17 Do 19.10.2006
Autor: Gonozal_IX

Hiho,

Partialbruchzerlegung war schon der richtige Ansatz.
Ich geb dir mal nen Hinweis, mal gucken, ob du dann von allein weiterkommst

[mm] \bruch{1}{x(1+x^3)} [/mm] = [mm] \bruch{x^2 * 1}{x^3(1+x^3)} [/mm] = [mm] \bruch{x^2 * (1 + x^3 - x^3)}{x^3(1+x^3)} [/mm]

Kommst nun alleine weiter?

Gruß,
Gono.

Bezug
                
Bezug
Unbest. Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:40 Fr 20.10.2006
Autor: papillon

Ok, vielen Dank. Der Trick mit dem aufspalten und erweitern hat mir gefehlt. Dann komme ich auf das gesuchte Ergebnis, nämlich

ln|x| - [mm] \bruch{1}{3} ln|1+x^{3}| [/mm]

Wenn ich jetzt noch das unbestimmte Integral von -0,5 bis 0,5 bestimmen soll, gehe ich doch folgendermaßen vor:

Ich bestimme die singulären punkte und teile das integral entsprechend auf, untersuche dann die beiden Grenzwerte. (Bei mir ergibt dies, dass das integral nicht konvergiert).

Jedoch konvergiert das Integral im sinne des Hauptwertes gegen [mm] \bruch{1}{3} ln|\bruch{7}{9}| [/mm]  .


Kann das jemand bestätigen, oder habe ich mich verrechnet?

Bezug
                        
Bezug
Unbest. Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 17:00 Sa 21.10.2006
Autor: eszet

Man kann die Stammfunktion, die in deiner Formelsammlung angegeben wird, meiner Meinung nach einfacher und ohne Tricks finden, indem man
[mm] t=x^{3} [/mm]
substituiert und danach eine Partialbruchzerlegung durchführt.

Das Integral konvergiert auch bei mir nicht und
als Hauptwert bekomme ich ebenfalls [mm] \bruch{1}{3}*ln (\bruch{7}{9}) [/mm] heraus. :-)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]